화학공학소재연구정보센터
Chemical Engineering Science, Vol.102, 335-345, 2013
Experimental and numerical study of two-phase flows in arrays of cylinders
In this paper we study the spreading of a liquid jet in a periodic array of cylinders with a characteristic size of the passages between solid obstacles equal to 1.5 mm, close to the capillary length. An important outcome of our study is to show that this configuration allows most of the two-phase flow regimes described in the literature about trickle beds to be observed, even with no gas injection. Different aspects of the flow phenomenology have been studied, such as bubble creation and transport. As direct numerical methods for tracking interfaces would require too much computation time, especially in three-dimensional cases, we propose to simulate the two-phase flows observed experimentally with two-dimensional simulations corresponding to the spreading of a liquid jet in an at of disks. We show that this numerical approach allows the phenomenology observed experimentally to be reproduced satisfactorily. Hence, numerical simulations can be used subsequently to study the effects of specific parameters without setting up a new experimental procedure. As an example, the stabilizing effect of gas injection on the flow pattern is studied numerically. (C) 2013 Elsevier Ltd. All rights reserved