Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.5, 654-660, October, 1998
미세 PSZT분말의 수열합성 및 소결
Hydrothermal Preparation and Sintering of Fine PSZT Powder
초록
수열합성법을 이용한 PSZT제조시 출발물질의 첨가량과 광화제가 입자의 결정성과 입자크기 분포 및 소결체의 유전율에 미치는 영향을 조사하였다. Pb와 Sr의 비 및 Zr과 Ti의 비를 변화시킨 0.5 M의 혼합용액에 광화제로 KOH를 2∼20 wt% 첨가한 후 120∼200℃에서 2시간 동안 수열반응을 통해 0.3∼15 μm의 평균입자 크기를 갖는 입방체 모양의 PSZT분말을 제조하였다. 또한 제조된 분말을 1150℃에서 2시간 동안 소결반응하여 1000∼3000의 유전율을 갖는 소결체를 제조하였다. 실험결과 광화제의 농도는 10 wt%, Sr/(Sr+Ti)은 0.05, Zr/(Zr+Ti)은 0.52일 때 PSZT분말의 평균입자크기가 0.5μm로 작았으며, 이를 소결한 소결체의 유전율도 2900으로 높았다. 한편, 광화제의 농도를 증가시켜 입자의 평균입경을 작고 균일하게 제어할 수 있었으나 광화제를 과도하게 첨가하면 응집이 유발되어 입경이 커졌다. 입자의 결정성에 영향을 미치지 않을 정도로 Sr을 소량 첨가하여 소결체의 유전율을 증가시킬 수 있었다. 또한, Zr을 첨가함으로써 주요 결정상을 정방정에서 능면정으로 전이시킬 수 있었다.
In preparing PSZT powder by hydrothermal synthesis, effects of reaction temperature, concentration of raw materials and mineralizer on crystallinity, particle size distribution, and dielectric constant were investigated. By varying the concentration of mineralizer and the ratio of Pb to Sr or Zr to Ti, crystalline PSZT powder, having the mean particle size of 0.3∼15μm, was prepared by hydrothermal synthesis in the temperature range of 120∼200℃ for a 2h reaction. PSZT ceramics, having dielectic constant of 1000∼3000, were prepared at 1150℃ for a 2h sintering reaction of the PSZT powders. Experimental results showed that the weight mean particle size of 0.5μm was obtained when the concentration of KOH in the solution was 10 wt% and the ratio of Pb to Sr was 0.95/0.05, that of Zr to Ti was 0.52/0.48. It also showed that the ceramics of dielectric constant of 2900 were prepared through sintering of this PSZT powder. Size of PSZT particles became smaller with its narrow distribution as the concentration of KOH increased up to 10 wt%. However, it came to be larger at this concentration and above. By adding small amount of Sr that would not affect that crystallinity of particles we can improve dielectric property of sintered materials. Addition of Zr may shift the major crystal phase of synthetic PSZT powder from tetragonal to rhombohedral phase.
- Matsuo Y, Sasaki H, Hayakawa S, Kananaru F, Koizumi M, J. Am. Ceram. Soc., 52, 516 (1969)
- Lin CH, Chin TS, Pei SC, "PZT Ceramics from Hydrothermally Synthesized Powders," IEEE (1995)
- Belsick JR, Halliyal A, Kumar U, Newnham RE, Am. Ceram. Soc. Bull., 66, 664 (1987)
- Kutty TRN, Balachandran R, Mater. Res. Bull., 19, 1479 (1984)
- Chernov AA, "Modern Crystallography III: Crystal Growth," 353, Springer Verlag, Berlin (1984)
- Mazdiyasni KS, Ceram. Int., 8, 42 (1982)
- 서경원, 이기정, 반종성, 정성택, 한국자원연구소 (1996)
- 이기정, 서경원, 한국결정성장학회지, 7, 47 (1997)
- Lee KJ, Seo KW, Mok YI, Yu HS, HWAHAK KONGHAK, 35(2), 147 (1997)
- Jung ST, Lee KJ, Seo KW, J. Korean Ind. Eng. Chem., 8(2), 292 (1997)
- 이기정, 정성택, 서경원, 한국결정성장학회지, 7, 292 (1997)
- Jung ST, Seo KW, HWAHAK KONGHAK, 35(4), 520 (1997)
- Beal KC, Am. Ceram. Soc., 21, 34 (1987)
- West AR, "Basic Solid State Chemistry," 339, John Wiley & Sons, New York (1988)
- van der Graaf MACG, Burggraaf AJ, Adv. Ceram., 12, 744 (1984)
- Rhodes WH, J. Am. Ceram. Soc., 64, 19 (1988)
- Onoda GY, "Ceramic Processing before Firing," ed. by G.Y. Onoda; Larry L. Hanch, 35, John Wiley & Sons, New York (1978)