화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.5, 667-673, October, 1998
염분농도에 따른 콘크리트 모사 세공용액에서의 철근 부식특성
Corrosion of Reinforcing Steel in Simulated Pore Solution with Chloride Ion
초록
염분이 함유된 콘크리트 모사 세공용액 중에서의 철근 부식반응을 Tafel 분극법과 교류 임피던스법에 의해 비교·고찰하였으며, 철근 표면의 거칠기와 산화피막층에 의한 부식거동을 연구하였다. 전기화학적 교류 임피던스법에 의한 철근부식의 진단은 매우 유용하며, 제안된 모델과 실험결과가 잘 일치하였다. 염분농도가 증가할수록 부식전위는 cathodic-방향으로 이동하여 부식확률이 증가하였으며, 부식전류도 동일한 양상을 보였다. 철근 표면의 산화피막은 주사전자현미경과 AES (Auger electron spectroscopy)로 분석하였다. Torch로 15초간 열처리하여 형성된 철근표면의 산화피막은 오히려 철근부식을 촉진하였으며, 철근 표면의 거칠기가 증가할수록 부식속도는 증가하였다. 또한, 초기 콘크리트 모사세공 용액의 온도 증가는 철근 부식속도의 증가를 가져왔다.
Rebar corrosion in a simulated pore solution (SPS) with chloride ion was analyzed by Tafel and AC impedance method and corrosion effects of surface roughness and iron oxide layer were also investigated. Corrosion estimation of rebar by electrochemical impedance spectroscopy is very useful, and the measured value can be adapted to proposed electrochemical equivalent circuit model. Corrosion potential increased to the cathodic direction as the concentration of chloride ions increased and corrosion current had the same tendency as above. Surface film were analyzed with scanning electron microscope and Auger electron spectroscopy. Thermally oxidized layer by torch flame for 15 sec was very poor at anti-corrosive property. The corrosion rate of rebar increased as the surface roughness increased. Also, higher temperature above RT of SPS in initial stage caused a rebar to be corroded faster.
  1. Hachani L, Triki E, Raharinaivo A, Moussa D, Bull. Lia. LPC, (169), 79 (1990)
  2. Wenger F, Metaux, Corrosion et Industrie, n° 742 (1987)
  3. Zayed AM, Sagues AA, Corrosion Sci., 40, 1025 (1990) 
  4. Rosenberg AM, Gaidis JM, Mater. Perform., 18, 45 (1979)
  5. Alekseev SN, Ratinow WB, "Corrosion Inhibitors for Steel in Reinforced Concrete Structures (in Russian)," Stroizdat, Moscow (1985)
  6. Nmai CK, Farrington SA, Bobrowski GS, Concr. Int., 14, 45 (1992)
  7. Gust J, Wieczorek G, Build Res. Prac., 50 (1988)
  8. Bennett J, ANTI-CORROSiON, 12 (1986)
  9. Flis J, Zakroczymski T, J. Electrochem. Soc., 143(8), 2458 (1996) 
  10. Jones DA, "Corrosion," pp. 208-220, Macmillan, New Jersey (1992)
  11. Stern M, Geary A, J. Electrochem. Soc., 104, 56 (1957)
  12. Mansfeld F, Adv. Corros. Sci. Technol., 6, 13 (1976)
  13. Syrett BC, Macdonald DD, Corrosion, 35, 505 (1979)