화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.5, 689-697, October, 1998
인산기를 함유한 Glycidylmethacrylate-Divinylbenzene 공중합체의 제조와 우라늄 흡착특성(제2보) -RGP수지에 대한 우라늄의 흡착평형과 흡착속도-
Preparation of Glycidylmethacrylate-Divinylbenzene Copolymers Containing Phosphoric Acid Groups and Their Adsorption Characteristics of Uranium(Ⅱ) -Adsorption Equilibrium and Kinetics of Uranium on RGP Resins-
초록
가교도와 희석제량을 변화시켜 제조한 인산기를 갖는 MR형 양이온 교환수지(RGP)에 대하여 우라늄의 흡착평형, 흡착속도 및 흡착 율속 단계를 고찰하였다. RGP 수지에 대한 우라늄의 흡착 평형은 가교도, 희석제량 및 흡착온도 변화 모두 Freundlich 등온식과 Langmuir 등온식으로 잘 나타났다. RGP수지에 대한 우라늄의 흡착량과 흡착속도는 흡착 온도가 증가함에 따라 증가하였으며 이때 흡착열은 ΔH = 11 kcal/mol 이었다. RGP 수지에 대한 우라늄의 흡착속도는 가교도의 영향인 경우 RGP-10(50) > RGP-1(50) > RGP-2(50) > RGP-5(50) < RGP-0(50)이며, 희석제량의 영향인 경우 RGP-2(75) > RGP-2(100) > RGP-2(50) > RGP-2(30) > RGP-2(0) 순으로 증가하였다. RGP수지에 대한 우라늄의 확산저항은 분자확산 < 세공확산 < 표면확산 순이었으며, 수지내의 우라늄의 확산 율속은 세공 확산보다 표면 확산이 율속이었다.
In this work, we studied the equilibrium, rate and rate determining step of uranium adsorption on RGP resins of MR type prepared by varying the degree of crosslinking and the amount of diluent. The equilibrium of uranium adsorption on RGP resins were well explained by Freundlich isotherm as well as Langmuir isotherm model. The amount of adsorption and adsorption rate increase with the adsorption temperature. The heat of the adsorption was 11 kcal/mol. The adsorption rates of uranium on RGP resins were decreased in the order of RGP-10(50) > RGP-1(50) > RGP-2(50) > RGP-5(50) < RGP-0(50) and RGP-2(75) > RGP-2(100) > RGP-2(50) > RGP-2(30) > RGP-2(0). The diffusion resistance of uranium into RGP resin increased as follows; molecular diffusion < pore diffusion < surface diffusion. On the other hand, the surface diffusion was more dominative than the pore diffusion in intraparticle region. Thus, this result indicates that the adsorption mechanism of uranium on RGP resins is intraparticle diffusion controlled.
  1. Egawa H, Polym. Process., 32, 38 (1983)
  2. Komiyama H, Smith JM, AIChE J., 20, 1110 (1974) 
  3. Hashimoto K, Miura K, Nagata LS, J. Chem. Eng. Jpn., 8, 367 (1975)
  4. Suzuki M, Kowazoe K, Seisankenku, J. Inst. Ind. Sci. University of Tokyo, 26, 275 (1974)
  5. Suzuki M, Kowazoe K, Seisankenku, J. Inst. Ind. Sci. University of Tokyo, 26, 295 (1974)
  6. Neretnieks I, Chem. Eng. Sci., 31, 107 (1976) 
  7. Neretnieks I, Chem. Eng. Sci., 31, 465 (1976) 
  8. Hirotsu T, Katoh S, Sugasaka K, J. Chem. Soc.-Dalton Trans., 1983 (1986)
  9. Hirotsu T, Katoh S, Sugasaka K, Takai N, Seno M, Itagaki T, Sep. Sci. Technol., 23, 49 (1988)
  10. Suzuki M, Fuji T, Tanaka S, Rep. Spec. Proj. Res. Energy, 49 (1987)
  11. Suzuki M, Chihara K, Fujimoto M, Yagi H, Wada A, Bull. Soc. Seawater Sci. Jpn., 39, 152 (1985)
  12. Uezu K, Saito K, Hori T, Furusaki S, Sugo T, Okamoto J, J. Atom. Energy Soc. Jpn., 30, 359 (1988)
  13. Guzman P, Ortiz I, Irablen A, Ind. Eng. Chem. Process Des. Dev., 25, 771 (1986) 
  14. Loureiro JM, Costa CA, Roudigues AZ, Chem. Eng. Sci., 43, 1115 (1988) 
  15. Huh KS, Sin SG, J. Korean Ind. Eng. Chem., 9(5), 680 (1998)
  16. Hori T, Furusaki S, Sugo T, Okamoto J, Nippon Kagaku Kaishi, 6, 1071 (1987)
  17. Saito K, Miyauchi T, 화학공학논문집, 7, 545 (1981)
  18. Kanno M, J. Atom. Energy Soc. Jpn., 23, 36 (1981)
  19. Huh KS, Suh GD, HWAHAK KONGHAK, 29(1), 63 (1991)
  20. Suh GD, Kim JH, Hea KS, HWAHAK KONGHAK, 28(3), 303 (1990)