화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.6, 894-900, November, 1998
탄소섬유 표면에의 고분자 전착과 복합재료 물성(Ⅰ) - MVEMA와 EMA의 전착 -
Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(Ⅰ) - Electrodeposition of MVEMA and EMA
초록
탄소섬유 복합재료의 층간전단 강도의 손상없이 충격강도를 향상시키기 위하여 반응성을 가진 유연한 고분자 물질 (MVEMA(poly(methyl vinyl ether-co-maleic anhydride)) 및 EMA (poly(ethylene-co-maleic anhydride)) 전착을 이용하여 탄소섬유와 에폭시 기지재료 사이에 계면상으로 도입하는 방법을 고려하였다. 따라서 계면상 물질의 MVEMA 및 EMA의 탄소섬유에의 전착수율에 대한 공정변수의 영향을 체계적으로 평가하였다. 염기성 수용액상에서 anhydride기를 가진 고분자의 전착 메카니즘은 -OH기의 공격에 의한 RCOO- 기의 생성에 기인함을 적외선 분광분석으로 확인하였다. 농도, 전류밀도, 반응시간의 증가에 따라 전착수율이 증가하였으며, 과도한 산소 버블의 발생은 전착된 고분자를 탈착시켜 수율을 감소시켰다. 흐르는 물에서 세척을 할 경우 탄소섬유와의 결합력이 없는 전착고분자는 쉽게 제거되어 0.5 wt% 정도의 전착 고분자만 잔류하였다.
An interphase between carbon fiber and epoxy matrix was introduced to increase impact strenght of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of RCOO- functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concenttration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight hain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.
  1. Christopher MA, Maria O, Electrochemistry, Oxford University Press, Berlin (1993)
  2. Subramanian RV, Jakubowski JJ, Polym. Eng. Sci., 19, 590 (1978)
  3. Subramanian RV, Pure Appl. Chem., 52, 1929 (1980)
  4. Hays DR, White CS, J. Paint Technol., 41, 961 (1969)
  5. Beck F, Prog. Org. Coat., 4, 1 (1976) 
  6. Lebras LR, J. Paint Technol., 38, 85 (1966)
  7. Rheineck AE, Usmani AM, J. Paint Technol., 41, 597 (1969)
  8. Bell JP, Wimolkiatisak AS, Rhee HW, Chang J, Joseph R, Kim W, Scola DA, J. Adhes., 53(1), 103 (1995)
  9. McKee DW, Mimeault V, Chem. Phys. Carbon, 8, 151 (1973)
  10. Dauksys DJ, J. Adhes., 5, 211 (1973)
  11. Ehrburger P, Donnet JB, Phil. Trans. R. Soc. Lond., A294, 495 (1980)
  12. Favre JP, Merienne MC, Int. J. Adhes., 1, 311 (1981) 
  13. Harris B, Beaumont PWR, deFerran EM, J. Mater. Sci., 6, 238 (1971)