Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.7, 1079-1084, December, 1998
환상지방족 Isocyanate(H12MDI)와 n-Hexanol의 반응속도론
Reaction Kinetics between a Cycloaliphatic Diisocyanate(H12MDI) and n-Hexanol
초록
우레탄 생성반응의 동역학을 조사하기 위해 지방족 이소시아네이트인 4,4'-dihexyl methane diisocyanate(H12MDI)와 1 관능기 알코올인 n-hexanol간의 반응을 실험적 측정과 수학적 모델링을 통해 연구하였다. 실험은 dibutyltin dilaurate(DBTDL)을 촉매로, 톨루엔을 용매로 온도, 촉매농도, [NCO]/[OH] 비 등을 변화시키면서 실시하였고, 반응동역학은 NCO기와 OH기의 반응에 의한 우레탄 생성반응 및 NCO기와 우레탄간의 반응에 의한 allophanate 생성반응 등 2가지 2차반응식으로 모사하였다. 반응속도상수는 Runge-Kutta 4th order 방법에 의한 전산모사방법으로 계산하였다. 대부분의 조건에서 실험치와 계산치가 잘 일치하여 본 연구에서 제안하는 반응 모델과 속도상수 계산방법이 적절함을 알 수 있었다. 또한 NCO기 90% 전환율에서 allophante/urethane의 비를 계산하였는데 대부분의 조건에서 20% 이상의 높은 값이 얻어져 allophanate 생성반응이 우레탄 물성에 중요한 영향을 미칠 수 있음을 알 수 있었다.
Reaction kinetics between 4,4'-dihexyl methane diisocyanate(H12 MDI) and n-hexanol in toluene with dibutyltin dilaurate(DBTDL) as catalyst was studied by experimental measurements and mathematical modeling. Experiments were carried out at various temperatures, catalyst concentrations and [NCO]/[OH] ratios, and the reaction kinetics were described by two second-order reactions, the one between NCO and OH leading to urethane and the other between urethane and NCO leading to allophanate. The rate constants were estimated by the Runge-Kutta 4th-order method. Experiments and mathematical simulations showed a good agreement for various experimental conditions. The [allophanate]/[urethane] ratios at 90% conversion of initial NCO were estimated to be over 20% for most conditions employed in the present study, indicating that allophanate formation might significantly affect the properties of urethane polymers.
- Saunders JS, Frisch KC, "Polyurethane: Chemistry and Technology," High Polymer Series, XVI, Wiley-Interscience, New York, Park I (1962)
- Saunders JS, Frisch KC, "Polyurethane: Chemistry and Technology," High Polymer Series, XVI, Wiley-Interscience, New York, Park II (1964)
- Lenz RW, "Organic Chemistry of Synthesic High Polymers," Wiley-Interscience, New York (1967)
- Hepburn C, "Polyurethane Elastomers," Applied Science, London (1973)
- Lyman DJ, J. Polym. Sci., 45, 49 (1960)
- Anzuino G, Pirro A, Rossi G, Polo Friz L, J. Polym. Sci. A: Polym. Chem., 13, 1667 (1975)
- Yilgor I, McGrath JE, J. Appl. Polym. Sci., 30, 1733 (1985)
- Yilgor I, Orhan EH, Baysal BM, Makromol. Chem., 179, 109 (1978)
- Tiger RP, Enteils SG, Kinetikai Kataiiz., 6, 554 (1965)
- Ephraim S, Woodword AE, Mesrobian RB, J. Am. Chem. Soc., 80, 1326 (1958)
- Oberth AE, Bruenner RS, J. Phys. Chem., 72, 8540 (1968)
- Moodie RB, Sansom PJ, J. Chem. Soc.-Perkin Trans. 2, 664 (1981)
- Allport DC, Janes WH, "Block Copolymers," Applied Science, London (1973)
- Lyman DJ, J. Polym. Sci., 45, 49 (1960)
- Ganbiroza-Jukic M, Gomzi Z, Mencer J, J. Appl. Polym. Sci., 47, 513 (1993)
- Chang MC, Chen SA, J. Polym. Sci. A: Polym. Chem., 25, 2543 (1987)
- Heiss HL, Combs FP, Gemeinhardt PG, Saunders JH, Hardy EE, Ind. Eng. Chem., 51, 929 (1959)
- Braun G, Laurer D, Kunststpffe, 55, 249 (1965)
- Sumi M, Chokki Y, Nakai Y, Nakabayashi M, Kanzawa J, Makromol. Chem., 78, 146 (1964)
- Okutto H, Makromol. Chem., 98, 148 (1966)
- Hofmann AW, Ber., 4, 247 (1871)
- Baker JW, Holdworth JB, J. Chem. Soc., 713 (1947)
- Baker JW, Gaunt J, J. Chem. Soc., 9 (1949)
- Baker JW, Gaunt J, J. Chem. Soc., 27 (1949)
- Lee YM, Kim BK, Shin YJ, Polym.(Korea), 15(4), 447 (1991)
- Riggs JB, "An Introduction to Numerical Methods for Chemical Engineers," 2nd editi, Texas Tech University Press (1987)
- David DJ, Staley HB, "Analytical Chemistry of Polyurethanes," High Polymer Series, XVI, Part III, Wiley-Interscience, New York (1969)