화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.7, 1079-1084, December, 1998
환상지방족 Isocyanate(H12MDI)와 n-Hexanol의 반응속도론
Reaction Kinetics between a Cycloaliphatic Diisocyanate(H12MDI) and n-Hexanol
초록
우레탄 생성반응의 동역학을 조사하기 위해 지방족 이소시아네이트인 4,4'-dihexyl methane diisocyanate(H12MDI)와 1 관능기 알코올인 n-hexanol간의 반응을 실험적 측정과 수학적 모델링을 통해 연구하였다. 실험은 dibutyltin dilaurate(DBTDL)을 촉매로, 톨루엔을 용매로 온도, 촉매농도, [NCO]/[OH] 비 등을 변화시키면서 실시하였고, 반응동역학은 NCO기와 OH기의 반응에 의한 우레탄 생성반응 및 NCO기와 우레탄간의 반응에 의한 allophanate 생성반응 등 2가지 2차반응식으로 모사하였다. 반응속도상수는 Runge-Kutta 4th order 방법에 의한 전산모사방법으로 계산하였다. 대부분의 조건에서 실험치와 계산치가 잘 일치하여 본 연구에서 제안하는 반응 모델과 속도상수 계산방법이 적절함을 알 수 있었다. 또한 NCO기 90% 전환율에서 allophante/urethane의 비를 계산하였는데 대부분의 조건에서 20% 이상의 높은 값이 얻어져 allophanate 생성반응이 우레탄 물성에 중요한 영향을 미칠 수 있음을 알 수 있었다.
Reaction kinetics between 4,4'-dihexyl methane diisocyanate(H12 MDI) and n-hexanol in toluene with dibutyltin dilaurate(DBTDL) as catalyst was studied by experimental measurements and mathematical modeling. Experiments were carried out at various temperatures, catalyst concentrations and [NCO]/[OH] ratios, and the reaction kinetics were described by two second-order reactions, the one between NCO and OH leading to urethane and the other between urethane and NCO leading to allophanate. The rate constants were estimated by the Runge-Kutta 4th-order method. Experiments and mathematical simulations showed a good agreement for various experimental conditions. The [allophanate]/[urethane] ratios at 90% conversion of initial NCO were estimated to be over 20% for most conditions employed in the present study, indicating that allophanate formation might significantly affect the properties of urethane polymers.
  1. Saunders JS, Frisch KC, "Polyurethane: Chemistry and Technology," High Polymer Series, XVI, Wiley-Interscience, New York, Park I (1962)
  2. Saunders JS, Frisch KC, "Polyurethane: Chemistry and Technology," High Polymer Series, XVI, Wiley-Interscience, New York, Park II (1964)
  3. Lenz RW, "Organic Chemistry of Synthesic High Polymers," Wiley-Interscience, New York (1967)
  4. Hepburn C, "Polyurethane Elastomers," Applied Science, London (1973)
  5. Lyman DJ, J. Polym. Sci., 45, 49 (1960) 
  6. Anzuino G, Pirro A, Rossi G, Polo Friz L, J. Polym. Sci. A: Polym. Chem., 13, 1667 (1975)
  7. Yilgor I, McGrath JE, J. Appl. Polym. Sci., 30, 1733 (1985) 
  8. Yilgor I, Orhan EH, Baysal BM, Makromol. Chem., 179, 109 (1978) 
  9. Tiger RP, Enteils SG, Kinetikai Kataiiz., 6, 554 (1965)
  10. Ephraim S, Woodword AE, Mesrobian RB, J. Am. Chem. Soc., 80, 1326 (1958) 
  11. Oberth AE, Bruenner RS, J. Phys. Chem., 72, 8540 (1968)
  12. Moodie RB, Sansom PJ, J. Chem. Soc.-Perkin Trans. 2, 664 (1981)
  13. Allport DC, Janes WH, "Block Copolymers," Applied Science, London (1973)
  14. Lyman DJ, J. Polym. Sci., 45, 49 (1960) 
  15. Ganbiroza-Jukic M, Gomzi Z, Mencer J, J. Appl. Polym. Sci., 47, 513 (1993) 
  16. Chang MC, Chen SA, J. Polym. Sci. A: Polym. Chem., 25, 2543 (1987) 
  17. Heiss HL, Combs FP, Gemeinhardt PG, Saunders JH, Hardy EE, Ind. Eng. Chem., 51, 929 (1959) 
  18. Braun G, Laurer D, Kunststpffe, 55, 249 (1965)
  19. Sumi M, Chokki Y, Nakai Y, Nakabayashi M, Kanzawa J, Makromol. Chem., 78, 146 (1964) 
  20. Okutto H, Makromol. Chem., 98, 148 (1966) 
  21. Hofmann AW, Ber., 4, 247 (1871)
  22. Baker JW, Holdworth JB, J. Chem. Soc., 713 (1947) 
  23. Baker JW, Gaunt J, J. Chem. Soc., 9 (1949) 
  24. Baker JW, Gaunt J, J. Chem. Soc., 27 (1949) 
  25. Lee YM, Kim BK, Shin YJ, Polym.(Korea), 15(4), 447 (1991)
  26. Riggs JB, "An Introduction to Numerical Methods for Chemical Engineers," 2nd editi, Texas Tech University Press (1987)
  27. David DJ, Staley HB, "Analytical Chemistry of Polyurethanes," High Polymer Series, XVI, Part III, Wiley-Interscience, New York (1969)