화학공학소재연구정보센터
Electrochimica Acta, Vol.63, 323-328, 2012
Synthesis of palladium nanoparticles decorated helical carbon nanofiber as highly active anodic catalyst for direct formic acid fuel cells
We present a single metal approach to produce highly active catalyst materials based on Pd-decorated helical carbon nanofibers. Helical carbon fibers are synthesized by a chemical vapor deposition process on a C-60 supported Pd catalyst and the obtained fibers are functionalized by H2O2 followed by a decoration with Pd nanoparticles. Although transmission electron microscopy images show that the decoration is relatively inhomogeneous the electrocatalytic activity for formic acid oxidation is very high. Cyclic voltammetry measurements (CV) show that the generated current peak value for Pd-decorated helical carbon nanofibers is 300 mA/mg(Pd) for a scan rate of 10 mV/s. This is significantly higher than the corresponding value of a reference sample of multiwalled carbon nanotubes decorated with Pd nanoparticles by the same process. Fuel cell tests for our Pd-decorated helical carbon nanofibers also displayed a high power density, although not as superior to Pd-decorated multiwalled nanotubes as measured by CV. Our results show that helical carbon nanofibers have several good properties, such as a rigid anchoring of catalyst nanoparticles and a suitable structure for creating functionalization defects which make them an interesting candidate for electrochemical applications. (C) 2012 Elsevier Ltd. All rights reserved.