Electrochimica Acta, Vol.91, 302-306, 2013
Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells
Novel polymer gel electrolytes (PGEs) with high ionic conductivity based on polyvinyl (acetate-co-methyl methacrylate) [P(VA-co-MMA)] were prepared by soaking porous copolymers in an organic electrolyte solution [acetonitrile (ACN) or 3-Methoxypropionitrile (MPN)] that contained an I-3(-)/I- as redox couple. Quasi-solid-state dye-sensitized solar cells (QS-DSSCs) were fabricated with the PGEs, and the best PGE was selected and optimized. Using the best PGE and under 100 mW cm(-2) light illumination (AM1.5), the QS-DSSC achieved a high photovoltaic conversion efficiency of 9.10%, nearly the same as that for the DSSC based on the original liquid electrolyte. Introduction of TiO2 nanoparticles into the PGEs further enhanced PGEs ionic conductivity and the conversion efficiency to 9.40%. Subsequent results revealed that our QS-DSSC had a better stability because it could maintain 96.7% of its initial efficiency after long-time (1000 h) exposure to simulative sunlight. Besides, for the first time, large-area QS-DSSCs were fabricated by screen printing of PGE, other than the traditional vacuum injection that was infeasible for the viscous gel electrolyte. Finally, our 5 cm x 7 cm QS-DSSC sub-module exhibited a conversion efficiency higher than 4%. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords:Printable;Polymer gel electrolyte;P(VA-co-MMA);Quasi-solid-state dye-sensitized solar cells