화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.2, 247-251, April, 1999
Zirconia에 담지된 산화텅스텐 촉매의 산 성질과 산 촉매활성
Acidic Properties of Tungsten Oxide Supported on Zirconia and Catalytic Activities for Acid Catalysisp
초록
분말 Zr(OH)4를 ammonium metatungstate수용액에 넣어서 증발 건조시킨 후 공기중 높은 온도에서 소성하여 zirconiz에 담지된 WO3촉매를 제조하였다. ZrO2에 소량 (1 wt%)의 WO3를 첨가하면 촉매의 산의 양과 세기가 급격하게 증가하였으며 촉매는 Lewis산과 Bronsted산 모두를 가지고 있었다. 이와 같은 WO3/ZrO2촉매의 큰 산의 세기와 많은 산의 양은 WO3와 ZrO2의 상호작용으로 생성된 W=O결합의 성질에 기인하였다. 2-propanol의 탈수반응에서는 WO3함량이 20 wt%이고 973K에 소성한 촉매가 최대의 촉매활성을 보였으며 cumene의 탈알킬화 반응에서는 WO3함량이 15wt%이고 1023 K에서 소성한 촉매가 최대 촉매활성을 나타내었다. 2-propanol의 탈수반응에서 촉매활성의 변화는 대략적으로 촉매의 산의 양의 변화와 상호 관련되었다.
Tungsten oxide supported on zirconia was prepared by drying powdered Zr(OH)4 with ammonium metatungstate aqueous solution, followed by calcining in air at high temperature. Upon the addition of only small amount of tungsten oxide (1 wt% WO3) to ZrO2, both the acidity and acid strength of catalyst increased remarkably, showing the presence of Bronsted and Lewis acid sites on the surface of WO3/ZrO2. The high acid strength and large amount of acid sites on WO3/ZrO2 were due to the presence of the W=O bond nature of complex formed by the interaction between WO3 and ZrO2. The catalyst containing 20 wt % WO3, calcined at 973 K, showed the highest catalytic activity for the 2-propanol dehydration, while the catalyst containing 15 wt % WO3, calcined at 1023 K, exhibited the highest catalytic activity for the cumene dealkylation. For the 2-propanol dehydration the catalytic activities of WO3/ZrO2 catalysts were roughly correlated with their acidities.
  1. Cheung TK, Ditri JL, Lange FC, Gates BC, Catal. Lett., 31(2-3), 153 (1995) 
  2. Tanabe K, Misono M, Ono Y, Hattori H, "New Solid Acids and Bases," Elsevier Science, Amsterdam (1989)
  3. Arata K, Adv. Catal., 37, 165 (1990)
  4. Ward DA, Ko EI, J. Catal., 150(1), 18 (1994) 
  5. Kustov LM, Kazansky VB, Figueras F, Tichit D, J. Catal., 150(1), 143 (1994) 
  6. Hsu CY, Heimbuch CR, Armes CT, Gates BC, J. Chem. Soc.-Chem. Commun., 1645 (1992)
  7. Lange FC, Cheung TK, Gates BC, Catal. Lett., 41(1-2), 95 (1996) 
  8. Zarkalis AS, Hsu CY, Gates BC, Catal. Lett., 29(1-2), 235 (1994) 
  9. Hosoi T, Shimadzu T, Ito S, Baba S, Takaoka H, Imai T, Yokoyama N, Prepr. Symp. Div. Petr. Chem. American Chemical Society, Los Angeles, 562 (1988)
  10. Ebitani K, Konishi J, Hattori H, J. Catal., 130, 257 (1991) 
  11. Hino M, Arata K, J. Chem. Soc.-Chem. Commun., 1259 (1987)
  12. Larsen G, Lotero E, Parra RD, "Proc. 11th Int. Conger. Catal," 533 (1996)
  13. Basrur AG, Patwardham SR, Vyas SN, J. Catal., 127, 86 (1991) 
  14. Murrell LL, Grenoble DC, Baker RTK, Prestridge EB, Fung SC, Hianelli RR, Cramer SP, J. Catal., 79, 207 (1983) 
  15. Roosnaiern AJ, Koster D, Moi JC, J. Phys. Chem., 84, 3075 (1980) 
  16. Karakonstantis L, Bourikas K, Lycourghiotis A, J. Catal., 162(2), 295 (1996) 
  17. Grunert W, Shpiro ES, Feldhaus R, Anders K, Antoshin GV, Minachev KM, J. Catal., 107, 522 (1987) 
  18. Sohn JR, Park MY, J. Ind. Eng. Chem., 4(2), 84 (1998)
  19. Sohn JR, Ryu SG, Langmuir, 9, 126 (1993) 
  20. Sohn JR, Cho SG, Pae YI, Hayashi S, J. Catal., 159(1), 170 (1996) 
  21. Sohn JR, Lee SY, Appl. Catal. A: Gen., 164(1-2), 127 (1997) 
  22. Olah FGA, Prakash GKS, Sommer J, Science, 206, 13 (1979) 
  23. Sohn JR, Kim HJ, J. Catal., 101, 428 (1986) 
  24. Parry EP, J. Catal., 2, 371 (1963) 
  25. Decanio SJ, Sohn JR, Paul PO, Lunsford JH, J. Catal., 101, 132 (1986) 
  26. Sohn JR, Jang HJ, Park MY, Park EH, Park SE, J. Mol. Catal., 93, 149 (1994)