Electrochimica Acta, Vol.106, 534-540, 2013
Graphite-anchored lithium vanadium oxide as anode of lithium ion battery
Graphite-anchored lithium vanadium oxide (Li1.1V0.9O2) has been synthesized via a "one-pot" in situ method. The effects of the synthesis conditions, such as the ratio of reaction components and calcination temperature, on the electrochemical performance are systematically investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), galvanostatic discharge/charge tests and differential scanning calorimetry (DSC). Compared with the simple mixture of graphite and lithium vanadium oxide, the graphite-anchored lithium vanadium oxide delivers an enhanced reversible capacity, rate capability and cyclic stability. It also shows better thermal stability. (C) 2013 Elsevier Ltd. All rights reserved.