화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.2, 268-274, April, 1999
키토산을 이용한 중금속(Cu2+) 흡착
Adsorption of Cupric Ions on Chitosan
초록
평균분자량이 8.2×105, 탈아세틸화도가 85%인 키토산을 2wt% 초산 수용액에 용해시킨 후 졸-겔법에 의해 키토산 비드를 제조하였다. 졸-겔법에 의해 제조된 키토산 비드는 SEM 사진과, BET 측정으로 다공성임을 확인할 수 있었다. 다공성 키토산 비드에 의한 Cu2+의 흡착평형은 Sips식으로 잘 묘사할 수 있었으며, 키토산 비드 내부에서의 확산과정은 세공 및 표면확산 기구로 설명할 수 있었다. 고정층에서 Cu2+의 흡착거동은 linear driving force approximation (LDFA)으로 잘 묘사할 수 있었으며, 본 연구에 사용된 다공성 키토산 비드는 Cu2+을 회수하는데 우수한 흡착제임을 확인할 수 있었다.
The chitosan solution was prepared by dissolving chitosan into 2 wt % aqueous acetic acid solution and then chitosan beads were made by sol-gel method. The average molecular weight and the degree of deacetylation of the chitosan used here were determined to be 8.2×105 and 85%, respectively. chitosan beads were highly porous which was confirmed by SEM photography and BET. Adsorption equilibrium of Cu2+ on porous chitosan beads could be represented by Sips equation. The diffusion of cupric ions in the chitosan beads could be explained by pore and surface diffusion mechanisms. Adsorption dynamics of Cu2+ in fixed-bed could be simulated by linear driving force approximation (LDFA). It was proven that porous chitosan beads manufactured in this work are good adsorbents for the removal of Cu2+.
  1. Roberts GAF, "Chitin Chemistry," Macmillan Press LTD, London, 1 (1992)
  2. Kim YB, "첨단기술의 신소재 키틴과 키토산," 16 (1991)
  3. Choi KS, Ryu YW, Polym.(Korea), 14(4), 408 (1990)
  4. Cho SK, Kim SJ, Jung BO, Kim JJ, Choi KS, Lee YM, J. Korean Ind. Eng. Chem., 5(5), 899 (1994)
  5. King CJ, "Separation and Purification: Critical Needs and Opportunities; Committee on Separation Science and Technology," National Academy Press, Washington, DC (1987)
  6. Muzzarelli RAA, "Natural Chelating Polymers," Pergamon Press, New York (1973)
  7. Muzzarelli RAA, "Chitin," Pergamon Press, Oxford (1977)
  8. Masri MS, Reuter FW, Friedman M, J. Appl. Polym. Sci., 18, 675 (1974) 
  9. Rorrer GL, Hsien TY, Ind. Eng. Chem. Res., 32, 2170 (1993) 
  10. Park CG, Lee YM, Kim JH, Jeong CN, J. Korean Ind. Eng. Chem., 4(3), 583 (1993)
  11. Clark GL, Smith AF, J. Phys. Chem., 40, 863 (1936) 
  12. Nishimura K, J. Biomed. Mater. Res., 20, 1359 (1986) 
  13. Moon H, Tien C, Chem. Eng. Sci., 43, 1269 (1988)