화학공학소재연구정보센터
Electrochimica Acta, Vol.115, 31-45, 2014
Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes
It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore, it was illustrated through a literature review on SOFC electrodes that porous electrode theory not only describes the classic LSM:YSZ SOFC cathode well, but SOFC electrodes in general. The extensive impedance spectroscopy study of LSM:YSZ cathodes consisted of measurements on cathodes with three different sintering temperatures and hence different microstructures and varying degrees of LSM/YSZ solid state interactions. LSM based composite cathodes, where YSZ was replaced with CGO was also studied in order to acquire further knowledge on the chemical compatibility between LSM and YSZ. All impedance measurements were acquired in the very broad temperature range of 200-900 degrees C for complete elucidation of the impedance. All impedance spectra were analyzed in terms of porous electrode theory. Physical materials parameters were extracted from the analysis, which were in excellent accordance with literature values. Valuable insight about the dissolution of Mn in the cathode composite material YSZ during preparation was furthermore provided along with valuable engineering characteristics such as the electrochemical utilization thickness. From the combined impedance study and literature review, it is clear, that porous electrode theory is the most suitable framework for any type of porous composite SOFC electrode evaluation. (C), 2013 The Authors. Published by Elsevier Ltd. All rights reserved.