화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.3, 374-381, May, 1999
Poly(styrene-maleic anhydride)로 가교된 poly(vinyl alcohol)막을 이용한 물/에탄올 혼합물의 투과증발 특성
Pervaporation Characteristics of Water/ethanol Mixtures using PVA Membranes Crosslinked with Poly(styrene-maleic anhydride)
초록
스티렌-무수말레인산 공중합체 (PSMAn)를 이용하여 가교 폴리비닐알콜막을 제조하였고, 물-에탄올 혼합물 분리에 대한 투과증발 특성을 연구하였다. 제조된 폴리비닐알콜막은 92/8 wt. % 에탄올/물 조성에서 PSMAn 함량이 증가할수록 투과도와 선택도가 모두 증가된 특성을 나타내었다. 그러나 공급액에서 물의 함량이 증가하면 가교도가 증가했음에도 불구하고 2%>1%>0.5%순으로 총괄 투과도는 증가하였고, 선택도는 물에 대한 높은 흡착과 그로부터 생긴 가소화 작용 때문에 감소하였다. 또한, 온도에 대한 전반적인 투과도는 Arrhenius 형태를 따랐으며, 특히, 2.0% 가교 PVA막의 경우, 조업 온도가 30℃에서 50℃로 증가함에 따라 투과도와 선택도가 모두 증가되는 투과증발 특성을 보여주었다. 이러한 결과로부터, PSMAn에 의해 막내에 도입된 친수성 기들이 물질 투과에 크게 영향을 준다는 것을 알 수 있었다.
Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(styrene-maleic anhydride) (PSMAn) were prepared, and the pervaporation characteristics of the membranes were studied for the separation of water/ethanol mixtures. The prepared PVA membranes showed that the permeation rate and separation factors were increased with increasing of PSMAn contents in the feed of 92/8 wt. % ethanol/water composition. However, when the water content in the feed composition was increased highly, the overall permeation rate was increased in the order of 2%>1%>0.5% in spite of the increase of the crosslinking contents, and the separation factor was decreased due to the higher sorbed water contents and the consequent plasticization action of membrane. Also, with respect to operating temperature, the permeation rate of the membranes obeyed the Arrhenius type. Especially, in the case of 2% crosslinked membrane, it was shown based on the pervaporation characteristics that both the permeation rate and separation factor were increased with increasing operating temperature from 30℃ to 50℃. From these results, it can be known that the hydrophilic groups introduced in the membrane by PSMAn highly affected the transport of permeants.
  1. Seok DR, Kang SG, Huang ST, J. Membr. Sci., 33, 71 (1987) 
  2. Blume I, Wijmers JG, Baker RW, J. Membr. Sci., 49, 253 (1990) 
  3. Fleming HL, Slater CS, "Membrane Handbook," ed. by W.S.W. Ho and K.K. Sirkar, Van Nostrand Reinhold, New York, 105 (1992)
  4. Neel J, "Pervaporation Membrane Separation Processes," ed. by R.Y.M. Huang, Elsevier, Amsterdam, 1 (1991)
  5. Shelden RA, Thompson EV, J. Membr. Sci., 19, 39 (1984) 
  6. Greenlaw FW, Shelden RA, Thompson EV, J. Membr. Sci., 2, 41 (1985) 
  7. Kang YS, Park HC, Polym.(Korea), 14(2), 178 (1990)
  8. Raghunath B, Hwang ST, J. Membr. Sci., 65, 147 (1992) 
  9. Tsuyumoto M, Akita K, Teramoto A, Desalination, 103, 211 (1995) 
  10. Jegal J, Lee KH, J. Appl. Polym. Sci., 60(8), 1177 (1996) 
  11. Goto M, Shiosaki A, Hirose T, Sep. Sci. Technol., 29(14), 1915 (1994)
  12. Mochizuki A, Sato Y, Ogawara H, Yamashita S, J. Appl. Polym. Sci., 40, 385 (1990) 
  13. Yeom CK, Jegal JG, Lee KH, J. Appl. Polym. Sci., 62(10), 1561 (1996) 
  14. Yanagishita H, Nakane T, Nozoye H, Yoshitome H, J. Appl. Polym. Sci., 49, 565 (1993) 
  15. Huang RYM, Feng XS, Sep. Sci. Technol., 28, 2035 (1993)
  16. Kim SG, Lim GT, Park SW, J. Korean Ind. Eng. Chem., 9(4), 469 (1998)
  17. Neel J, "Pervaporation Membrane Separation Processes," ed. by R.Y.M. Huang, Elsevier, Amsterdam, 33 (1991)
  18. Fujita H, Firtschr. Hochpolym.-Forsch., 3, 1 (1991)
  19. Ping ZH, Nguyen QT, Clement R, Neel J, J. Membr. Sci., 48, 297 (1990) 
  20. Cabasso I, Jagur-Grodzinski J, Vofsi D, J. Appl. Polym. Sci., 18, 2137 (1974) 
  21. Larchet C, Bulvestre G, Guillou M, Neel J, J. Membr. Sci., 17, 263 (1984)