- Previous Article
- Next Article
- Table of Contents
Energy and Buildings, Vol.70, 516-522, 2014
Development and design of a retrofit matrix for office buildings
This paper describes the methodology developed and the calculation steps used to evaluate the energy efficiency potential of office buildings. The methodology enables a detailed analysis of retrofit options for the building envelope and its energy supply system. Different simplification measures accelerate the data acquisition process for office building stock owners and allow a data handling according to the existing building information, thus enabling office building structures to be prompted to design typical building constructions. We implement solutions enabling both a time-saving accelerated data input for office buildings and the handling of incomplete data. An automated calculation of the most common refurbishment measures allows a comparison of up to 64 combinations of measures, the illustration of energy and CO2 savings, and an economic evaluation. The latter takes into account the time value of money, the uncertainty of future energy prices, and the possibility of delaying an investment. To this end, a net present value analysis and a real options analysis are implemented, enabling a comparison of retrofit alternatives with different initial and future cash flows both for buildings occupied by the investor (owner-occupier perspective) and for rented buildings (tenant perspective). Energy price scenarios as well as a Monte Carlo simulation account for the uncertainty in energy price trends. For a university building used as a test case, the simplified and time-saving data input methods were successfully tested and an automated evaluation of 64 typical retrofit combinations carried out. The results of the energy, ecological and economic efficiency evaluation shows that a generally preferred retrofit option cannot always be identified. Specifically, for the test case, the best-rated economic refurbishment possibility leads to the largest increase in final energy demand amongst all options considered, which points out the necessity of a multi-criteria evaluation. (C) 2013 Elsevier B.V. All rights reserved.
Keywords:Energy efficiency;Building refurbishment;Economic evaluation;Simplified data acquisition;Dynamic thermal model