화학공학소재연구정보센터
Energy Conversion and Management, Vol.62, 22-30, 2012
Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel)
In recent years, waste utilization before disposing to the land is the most important point about waste management. Due to the increasing emphasis on recycling, related to the two European Commission Directives (EC End of Life Vehicle Directive, EC Waste Landfill Directive) affecting the management of waste tires, there is interest in the development of alternative technologies for recycling waste tires. One of them is pyrolysis. For this purpose, a fixed bed reactor was used to pyrolysis of Tire Derived Fuel (TDF) at the temperatures of 350, 400, 450, 500, 550 and 600 degrees C with the heating rates of 5 and 35 degrees C/min. The maximum pyrolytic oil yield (38.8 wt.%) was obtained at 400 degrees C with 5 degrees C/min heating rate. The yield of pyrolytic oil decreased with increasing pyrolysis temperatures whereas the yield of gases increased. The fuel properties of the pyrolytic oil including higher heating value (HHV), elemental composition, flash point, viscosity, distillation and density were determined. Pyrolytic oil was characterized by fourier transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance spectroscopy (H-1 NMR) and gas chromatography-mass spectroscopy (GC-MS) techniques and also, the amount of polychlorinated dibenzodioxins/polychlorinated dibenzofurans (PCDDs/PCDFs) and congener distribution characteristics were studied for determination of environmental effects. It was seen that the pyrolytic oils have similar fuel properties with the diesel. It was also found that pyrolytic oil contained 0.00118 I-TEQs/g at very low level. Finally, the pyrolytic oil can be evaluated for energy recovery according to Regulation on Control of Waste Oils in Turkey. (C) 2012 Elsevier Ltd. All rights reserved.