Energy Conversion and Management, Vol.76, 1029-1042, 2013
Reducing a solar-assisted air-conditioning system's energy consumption by applying real-time occupancy sensors and chilled water storage tanks throughout the summer: A case study
This study describes an innovative occupancy and chilled-water storage-based operation sequence implemented in a solar-assisted air-conditioning system. The core purpose of this solar-assisted air-conditioning system is to handle the cooling and heating load of the Solar Energy Research Centre (CIESOL), thus minimising its environmental impact. In this study, the cooling mode was investigated with special attention focused on the chilled-water storage circuit. The critical concern is that the solar-assisted airconditioning system should always operate considering the actual load conditions, not using an abstract maximum load that is predetermined during the system's design process, which can lead to energy waste during periods of low occupancy. Thus, the fundamental problem is to identify the optimum operation sequence for the solar-assisted air-conditioning system that provides the best energy performance. The significance of this work lies in the demonstration of a new operation strategy that utilises real-time occupancy monitoring and chilled-water storage tanks to improve the efficiency of solar-assisted air-conditioning systems, thereby reducing their electricity consumption. Adopting this strategy resulted in a large energy-saving potential. The results demonstrate that during one cooling period, it is possible to conserve approximately 42% of the total electrical energy consumed by the system prior to the adoption of this operation strategy. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords:Real-time Occupancy detection;Chilled water storage;Solar-assisted air-conditioning system;Smart building