Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.5, 743-747, August, 1999
Modified Polystyrene/Polymethacrylate 블렌드의 상용성에 대한 분자구조 변화의 영향
Effect of Variation in the Molecular Structure on the Miscibility of Modified Polystyrene/Polymethacrylate Bleds
초록
비상용성인 polystyrene(PS)와 polymethacrylate(PMA)의 블렌드에서 분자간 수소결합이 가능하도록 구성고분자를 변성하였다. 공중합을 통해 hydroxystyrene 함량이 몰분율로 각각 7%, 10%, 18% 도입된 poly(styrene-co-4-hydroxystyrene) (modified polystyrene, MPS)을 합성하여 블렌드의 상용성 변화를 살펴보았다. 또한 PMA의 측쇄의 크기가 분자간 수소결합 형성에 미치는 영향을 조사하기 위하여 각각 methyl기, butyl기, hexyl기, ethylhexyl기의 측쇄를 갖는 PMA를 선정하였다. 그 결과 수산기의 함량이 증가함에 따라 분자간 수소결합 형성이 증가하였다. PMA의 측쇄의 크기에 따라 수소결합 형성 정도가 영향을 받아 상용성에 큰 차이가 나타남을 온도변화에 따른 상변화 거동을 통하여 확인하였다. 측쇄의 크기가 증가됨에 따라 입체장애 효과와 증가된 사슬의 운동성 때문에 분자간 수소결합의 형성 및 수소 결합력은 크게 감소하였다.
The component polymer was modified to enable the formation of intermolecular hydrogen bonding in the immiscibile polystyrene(PS)/polymethacrylate(PMA) blends. The mole percentages of hydroxystyrene of the poly(styrene-co-4-hydroxystyrene) copolymer(modified polystyrene, MPS) were controlled to 7%, 10% and 18%, respectively. MPS was used with PMA to study the variation of the miscibility in blends. PMA which had such different length of side chain as methyl, butyl, hexyl and ethylhexyl, respectively, was selected to study the effect of side chain length on the formation of intermolecular hydrogen bonding. As the hydroxyl content of MPS increased, the formation of intermolecular hydrogen bonding increased. The length of side chain of PMA had enormous effect on the miscibility of blend as confirmed from the result of cloud point measurement. As the length of side chain increased, the formation and the strength of intermolecular hydrogen bonding decreased severely due to the steric effect and the increased chain mobility.
- Paul DR, Polymer Blends, D.R. Paul and S. Newman ed., 1, 4, Academic Press, New York (1978)
- Fahrenholtz S, Kwei TK, Macromolecules, 14, 1076 (1981)
- Moskala EJ, Howe SE, Painter PC, Macromolecules, 17, 1671 (1984)
- Moskala EJ, Varnell DF, Coleman MM, Polymer, 26, 228 (1985)
- Landy CJT, Teegarden DM, Macromolecules, 24, 4310 (1991)
- Jong L, Pearce EM, Kwei TK, Macromolecules, 23, 507 (1990)
- Ledwith A, Rahnema M, Sen Gupta PK, J. Polym. Sci. A: Polym. Chem., 18, 2239 (1980)
- Chen SF, Ho T, Pearce EM, Kwei TK, Macromolecules, 23, 150 (1990)
- Ting SP, Pearce EM, Kwei TK, J. Polym. Sci. C: Polym. Lett., 18, 201 (1980)
- Ting SP, Bulkin BJ, Pearce EM, Kwei TK, J. Polym. Sci. A: Polym. Chem., 19, 1451 (1981)
- Pearce EM, Kwei TK, Min BY, J. Macromol. Sci.-Chem., A21, 1181 (1984)
- Chen CT, Morawetz H, Macromolecules, 22, 159 (1989)
- Bank M, Leffingwell J, Thies C, J. Polym. Sci. A: Polym. Chem., 10, 1097 (1972)
- Nishi T, Kwei TK, Polymer, 16, 285 (1975)
- Kwei TK, Nishi T, Roberts RF, Macromolecules, 7, 667 (1974)
- Painter PC, Snyder PC, Starsinic RW, Coleman M, Kuehn MM, Davis DW, J. Appl. Spectrosc., 35, 475 (1981)