화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.5, 754-760, August, 1999
용융탄산염 연료전지에서 알칼리 탄산염에 의한 Ni/MgO 촉매의 피독
Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC
초록
직접 내부개질형 MCFC용 촉매의 반응 전과 후의 특성분석을 ICP, BET, CHN, EDS, H2 화학흡착 분석을 통하여 수행하였다. 반응을 거치는 동안 탄산염 전해질의 구성 성분인 K와 Li가 촉매에 전달되고, 그 누적량은 단위전지 내의 위치에 따라 입구, 출구, 중간 순으로 감소하였다. 알칼리 전달량 증가에 따라 BET 표면적과 Ni 분산도가 감소하고 촉매 표면에 증착된 알칼리 탄산염 물질이 존재하는 것으로부터, 촉매 표면상에 존재하는 알칼리성분의 물리적 피복이 촉매 활성을 감소시키는 중요한 원인임을 확인하였다. SEM 분석 결과, 입구, 중간, 출구 순으로 알칼리 성분의 표면 피복율이 감소하였으나, 실제 메탄에 대한 수증기 개질반응의 촉매활성은 출구부분 촉매가 입구나 중간 부분 촉매보다 낮은 활성을 보임으로써, 알칼리 탄산염의 물리적 피복에 의한 활성감소 이외의 다른 화학적 피독 요인이 존재함을 예측하였고, 이를 FT-IR 분석을 통해 확인하였다.
The properties of the catalyst for a direct internal reforming type molten carbonate fuel cell were examined by ICP, BET, CHN, EDS, and H2 chemisorption. Potassium and lithium, the components of carbonate electrolyte, were transported to the catalyst during the operation of fuel cell, and the amounts of the deposited alkali elements were reduced in the order of inlet, outlet, and the middle. From the direct correlation between the amount of alkali and the physical properties such as BET surface area and Ni dispersion, and from the observation of the lump of the alkali species on the poisoned catalyst, it was confirmed that the physical blocking of the catalyst by alkali deposition was the main reason for the deactivation. Although the amount of alkali species was greater at the inlet than at the oulet, the catalyst sampled from the outlet had lower activity. This was caused by the chemical interaction between the alkali species and the catalyst at the outlet where temperature was highest in the cell body, which was detected by FT-IR analyses
  1. Appleby AJ, Foulkes FR, "Fuel Cell Handbook," Van Nostrand Reinhold (1989)
  2. Linden D, "Hand of Batteries and Fuel Cells," McGraw-Hill (1984)
  3. Shores D, Maru H, Uchida I, Selman JR, Proc. 3rd Int. Symp. on Carbonate Fuel Cell Technology, The Electrochemical Society, Inc. (1993)
  4. Nielsen JR, "Catalytic Steam Reforming," Catalysis-Science and Technology (1984)
  5. Selman RJ, Energy, 11, 153 (1986) 
  6. Tarjanyi M, Paetch L, Bernard R, Ghezel-Ayagih H, Reprints of Fuel Cell Seminar, Tucson, AZ, 177 (1995)
  7. Berger RJ, Doesburg EBM, van Ommen JG, Ross JRH, "Natural Gas Conversion II," Elsevier, Amsterdam, 309 (1994)
  8. Cavallaro S, Freni S, Cannistraci R, Aquino M, Giordano N, Int. J. Hydrog. Energy, 17, 181 (1992) 
  9. Berger RJ, Doesburg EBM, van Ommen JG, Ross JRH, Catal. Sci. Tech., 1, 455 (1991)
  10. Tonen Corporation. Tokyo, Japan Patent, 6-339633 (1993)
  11. Tonen Corporation. Tokyo, Japan Patent, 5-190194 (1990)
  12. Hirai C, Matsumra M, Sasaki A, Proc. 3rd Int. Symp. on Carbonate Fuel Cell Technology, The Electrochemical Society, Pennington, NJ, 146 (1993)
  13. Ijima M, Tanka J, Sasaki A, Nakajima T, Harima K, Miyake Y, "Fuel Cell Seminar," San Diego, CA, 226 (1994)
  14. Paetsch L, Patel PS, Maru HC, Baker BS, J. Electrochem. Soc., 136, 2230 (1989) 
  15. Kishida K, Nishiyama E, Tanaka T, Extended Abstracts for Fuel Cell Technology and Applications, 41 (1987)
  16. Rostrupnielsen JR, Christiansen LJ, Appl. Catal. A: Gen., 126(2), 381 (1995) 
  17. Dicks AL, J. Power Sources, 71(1-2), 111 (1998) 
  18. Paetsch L, Molten Carbonate Fuel Cell Development, Final Report for 1981 ~ 1987, DOE/DE-AC21-76ET11304, Danbury, CT, Energy Research Coporation, April, 213 (1987)
  19. Hirata H, Hori M, J. Power Sources, 63, 115 (1996) 
  20. Shinoki T, Matsumura M, Sasaki A, IEEE Trans. Energy Convers., 10, 722 (1995) 
  21. Lavalley JC, Catal. Today, 27(3-4), 377 (1996) 
  22. Moon HD, Lim TH, Lee HI, "Chemical Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC," Submitted