화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.6, 843-847, October, 1999
유동층반응기에서 화학증기침투에 의한 C/SiC의 복합체 제조시 변수의 영향 연구
Studies on the Effects of Variables on the Fabrication Of C/SiC Composite by Chemical Vapor Infiltration in a Fluidized Bed Reactor
초록
본 연구에서는 유동층-화학증기침투에 의해 이염화이메틸규소(DDS)와 수소로부터 생성된 탄화규소를 활성탄에 증착시킨 세라믹 탄소/탄화규소복합체가 제조되었다. 4∼12, 12∼20, 20∼40 mesh의 활성탄이 사용되었다. 증착 후 반응물인 이염화이메틸규소의 농도, 활성탄의 크기, 반응압력, 반응시간에 따른 반응후 각 시료의 표면적과 증착량 및 증착양상을 관찰하였다. 실험결과 DDS의 농도가 낮고 반응압력이 작을수록 시료 기공내에 고른 증착을 갖는 것을 알 수 있었다. 또한 기공직경과 표면적들이 어떠한 시점에서 최소값을 갖는 것으로 기공내부 증착에서 입자외부 표면 증착으로 바뀜을 알 수 있었다. DDS의 농도가 낮고 반응압력이 낮을 때 작은 탄화규소입자가 활성탄 표면에 더욱 고르게 증착되었다. 이 결과들은 SEM, TGA, 기공도측정 장치, BET에 의해 확인되었다.
In this research, C/SiC composites, i.e. activated carbon coated with SiC obtained from dichlorodimethylsilane(DDS) and hydrogen, have been made by chemical vapor infiltration(CVI) in a fluidized bed reactor. Activated carbons of sizes of 4∼12, 12∼20, and 20∼40 mesh were used. After deposition the surface area, the amount and the shape of deposit of each sample were observed at different concentrations of reactant DDS, sizes of activated carbon, reaction pressures and reaction times. The experimental results showed that uniform deposition in the pores of sample was obtained at a lower concentration of DDS and a lower pressure. Additionally, from the observation that the pore diameter and the surface area have minimum values at a certain time of deposition, it was known that deposition occurred inside of the pore at first and then on the outside of particle. Small particles of SiC were deposited uniformly on the surface of activated carbon at lower DDS concentrations and lower reaction pressures. The results were confirmed by SEM, TGA, the pore size distribution analyzer and BET.
  1. Emig G, Thin Solid Films, 241, 361 (1993)
  2. Goujard S, Vandenbulcke L, Tawil H, Thin Solid Films, 252(2), 120 (1994) 
  3. Komiyama H, Shimogaki Y, Egashira Y, Chem. Eng. Sci., 54(13-14), 1941 (1999) 
  4. Kim K, Choi S, Wang KL, Thin Solid Films, 225, 235 (1993) 
  5. Bickerdike RJ, Brown ARG, Hughes G, Ranson H, Proc. 5th Conf. on Carbon, Pergamon, New York, Vol. 1 (1992)
  6. Jung SC, Nobuyuki I, Park HC, Proc. Electrochem. Soc., 5, 253 (1996)
  7. Castillo JL, Rosner DE, Chem. Eng. Sci., 51(24), 5325 (1996) 
  8. Moene R, Makkee M, Schoonman J, Moulijn JA, Proceedings of the 5th International Carbon Conference in Essen, Deutschen Keramischen Gesellschaft, 474 (1992)
  9. Moene R, Tazelaar FW, Makkee M, Moulijn JA, Dutch Patent, 93.00816 (1993)
  10. Marschall KJ, Mleczko L, Chem. Eng. Sci., 54(13-14), 2085 (1999) 
  11. Kim YM, Song JS, Park SW, Lee JG, J. Mater. Sci., 28, 3866 (1993) 
  12. Kobayashi F, Kawa KI, Iwamoto K, J. Cryst. Growth, 28, 395 (1976) 
  13. Chung GY, Chem. Eng. Sci., 46, 723 (1991) 
  14. Chung GY, Cagliostro DE, McCoy BJ, Smith JM, "Rate of Chemical Vapor Deposition of SiC and Si on Single-Layer Woven Fabrics," NASA T.M. (1991)
  15. Vannice MA, Chao YL, Friedman RM, Appl. Catal., 20, 91 (1986) 
  16. Chorley RW, Lednor PW, Adv. Mater., 3, 474 (1991) 
  17. Chung GY, McCoy BJ, Smith JM, Cagliostro DE, AIChE J., 39, 1834 (1993) 
  18. Chung CH, Yoon HJ, Park SC, Moon SH, HWAHAK KONGHAK, 29(5), 614 (1991)
  19. Lee YS, Ryu SK, Rhee BS, HWAHAK KONGHAK, 33(1), 1 (1995)