화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.6, 857-862, October, 1999
Aminated Poly(ether sulfone)의 합성과 NO 가스의 흡착특성
Synthesis of Aminated Poly(ether sulfone) as Anion Exchanger and its NO Gas Adsorption
초록
아민화된 poly(ether sulfone)(APES)는 poly(ether sulfone)(PES)를 질산과 황산(촉매)의 혼산으로 니트로화한 poly(ether sulfone)(NPES)를 아민화하여 제조되었다. FT-IR의 분석 결과 1537과 1351 cm-1에서 NO2의 비대칭 신축진동과 대칭 신축진동에 의한 흡수피크로 니트로화가 되었음이 확인되었다. 또한 NPES의 아민화는 NO2에 의한 흡수피크가 사라지고 3470과 3374 cm-1에서 NH2기에 의한 비대칭 신축진동과 대칭 신축진동의 흡수피크로 확인되었다. PES(5 g; 21.55 mmol.)에 대한 니트로화의 최적 조건은 반응시간 12시간, 반응온도 120℃, 질산의 농도 28.00 mmol. 황산의 농도 52.00 mmol. 이었다. APES의 원소분석결과 반복단위당 0.89개의 아민기가 도입되었다. 실리카겔이나 활성탄소보다 흡착속도는 느리나 NO에 대한 흡착능이 우수하였고, 화학적인 흡착속도는 물리적 흡착속도보다 느리며, 화학적 흡착량이 물리적 흡착량 보다 높은 것을 알 수 있었다.
Aminated poly(ether sulfone)(APES) was prepared by amination of nitrated poly(ether sulfone)(NPES) after poly(ether sulfone)(PES) was nitrated with mixed acid of nitric acid and sulfuric acid(sulfuric acid is a catalyst). As a results of the FT-IR spectrum analysis, the nitration of PES was confirmed by the bands of asymmetric stretching and symmetric stretching of NO2 group at 1537 and 1351 cm-1, respectively. Also when the NPES was aminated, it was disappeared to absorbance peaks of NO2 group. And It was confirmed by the bands of asymmetric stretching and symmetric stretching of NH2 group at 3470 and 3374 cm-1, respectively. The optimum condition of the nitration on PES(5 g; 21.55 mmol.) was 12 hr of reaction time, 120℃ of reaction temperature, nitric acid of 28.00 mmol. and sulfuric acid of 52.00 mmol. As a result of the elemental analysis of APES, reapeating unit per amine groups were induced to 0.89. The adsorption rate of NO gas was lower than that of silica gel and active carbon. But the adsorption capacity of NO gas was higher than that of these. When the APES was absorbed to NO gas, the chemical adsorption rate was lower than the physical adsorption rate. But the chemical adsorption capacity of it was higher than physical adsorption capacity.
  1. Cho NS, Lim KP, Polym. Sci. Technol., 8(5), 596 (1997)
  2. Mizutani Y, J. Membr. Sci., 49, 121 (1990) 
  3. Joithe W, Bell AT, Lynn S, Ind. Eng. Chem. Process Des. Dev., 11, 434 (1972) 
  4. Hanada H, Appl. Catal., 64, 1 (1990) 
  5. Kintaichi Y, Catal. Lett., 6, 239 (1990) 
  6. Mochida I, Suetsugu K, Fujitsu H, Takeshita Y, J. Catal., 77, 519 (1982) 
  7. Teramoto M, Hiramine S, Shimada Y, Sugimoto Y, Teranishi H, J. Chem. Eng. Jpn., 11, 450 (1978)
  8. Ogura K, Ozeki T, Denki Kagaku, 51, 762 (1983)
  9. Hishinuma Y, Kaji R, Akimoto H, Nakajima F, Mori T, Kamo T, Arikawa Y, Nozawa S, Bull. Chem. Soc. Jpn., 52, 2863 (1979) 
  10. Sada E, Kumazawa H, Machida H, Ind. Eng. Chem. Res., 26, 2016 (1987) 
  11. Toshima N, Asanuma H, Yamaguchi K, Hirai H, Bull. Chem. Soc. Jpn., 62, 563 (1989) 
  12. Asanuma H, Takemura A, Toshima N, Hirai H, Ind. Eng. Chem. Res., 29(11), 2267 (1990) 
  13. Toshima N, Asanuma H, Hirai H, Bull. Chem. Soc. Jpn., 62, 893 (1989) 
  14. Park JS, Nho YC, Jin JH, Polym.(Korea), 22(1), 39 (1998)
  15. Park JS, Nho YC, Polym.(Korea), 22(1), 47 (1998)
  16. Ward WJ, Salemme RM, U.S. Patent, 3,780,496 (1973)
  17. Noshay A, Robenson LM, J. Appl. Polym. Sci., 20, 1885 (1976) 
  18. Kibler CJ, Lappin GR, U.S. Patent, 3,734,874 (1973)
  19. Salle R, Sillion B, FR Patent, 2,212,356 (1974)
  20. Hawkins RT, Macromolecules, 9, 189 (1976) 
  21. Son WK, Kim YJ, Song HY, Kim DC, Polym.(Korea), 22(3), 345 (1998)
  22. Kin HS, Son WK, Hwang TS, Park JK, Song HY, Polym.(Korea), 23(1), 8 (1999)
  23. Chikinai HA, Myakogo OH, "Ion Exchanging Method for Removing Elements," Voronedgski University, Voronedg, Russia, Chap. V, 337 (1984)