Fuel, Vol.110, 124-132, 2013
New approach to kinetic description of partially-reversible catalytic processes: Kinetics of the CH3OH synthesis at Zn/Cu-containing catalysts as an example
A new ideology and procedure for consideration of the contribution of inverse reactions to the analytic descriptions of the kinetics of heterogeneous catalytic processes (gross-reactions, GRs), which proceed with rate-determining steps (RDSs) and residual equilibrium portions (ExEqms), are proposed instead of the ordinary ideology and procedure that use the notion of the rate-determining step stoichiometric number (RDSSN). Instead of the RDSSNs, the notion of the matching coefficients (MCs) of stoichiometric nature is used. As was first shown by Weller [Catal Rev - Sci Eng 1992;34:227-80], the notion of the RDSSNs has no well-defined physical meaning and the repeated attempts of their experimental measurements gave no reproducible results. The MCs co-ordinate RDS, ExEqm, and GR equations with each other; they are determinable for any GR by a simple chemico-algebraic procedure. The procedures for determination of their values and deduction of kinetic equations are considered by the example of the CH3OH synthesis from H-2 and carbon oxides at Zn/Cu-containing catalysts. An improved kinetic equation is deduced and successfully applied to description of available data on the CH3OH synthesis at 0.1 (453 and 473 K) and 4.5 (513 K) MPa. (C) 2012 Elsevier Ltd. All rights reserved.
Keywords:Heterogeneous catalysis kinetic description;Methanol synthesis kinetics;Catalytic inverse reaction description;Catalytic kinetics theory