Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.8, 1129-1135, December, 1999
담지 코발트 촉매를 이용한 SO2의 원소황으로의 환원반응 특성
The Catalytic Reduction fo Sulfur Dioxide to Elemental Sulfur over Supported Cobalt Catalysts
초록
Υ-Al2O3, TiO2와 SiO2에 코발트를 함침시켜 촉매를 제조하고, 고정층 미분반응기에서 CO에 의한 SO2환원반응 특성을 조사하였다. 이때 온도는 350∼550℃ 영역에서, SO2 농도를 1000∼10000 ppm, CO/SO2몰비를 1.0∼3.0, 공간속도를 5000∼15000 h-1의 영역에서 사용하였으며 대기압하에서 실행하였다. Υ-Al2O3와 TiO2는 코발트 담체로 우수한 특성을 보였으며, 5 wt %코발트를 Υ-Al2O3에 함침시켜 얻은 촉매로 400 ℃이상의 온도에서 90% 이상의 높은 SO2 전환율과 6% 이하의 낮은 COS수율을 얻을 수 있었다. CO/SO2의 최적몰비는 양론비인 2.0으로 나타났으며, 몰비가 3.0으로 증가하면 SO2 전환율은 증가하였으나 대부분의 반응생성물이 COS로 나타났다. 실험영역의 SO2농도와 공간속도의 변화는 SO2 전환율과 반응선택성에 큰 영향을 미치지 않았다. 코발트는 활성화된 이후에 CoS2 상태로 존재하였으며 반응후에도 상변화는 관찰되지 않았다.
The reduction of SO2 by CO over supported cobalt catalysts was investigated within the temperature range of 350∼550℃, initial SO2 concentration of 1000∼10000 ppm, CO/SO2 molar ratio of 1.0∼3.0 and space velocity of 5000∼15000 h-1. Several types of supports such as γ-Al2O3, TiO2 were tested. The SO2 conversion and selectivity to elemental sulfur were investigated using a differential fixed bed reactor at atmospheric pressure. The catalyst prepared by wet impregration of 5 wt % cobalt on γ-Al2O3 showed SO2 conversion higher than 90% and COS yield lower than 6% at temperature above 400℃. The optimum CO/SO2 molar ratio was investigated as 2.0. At higher CO/SO2 molar ratio, the SO2 conversion became higher but the main product was COS. The effect of SO2 concentration and space velocity over SO2 conversion and COS yield was not appreciable in the experimental range. The activated cobalt phase was detected as CoS2 and the CoS2 phase unchanged even after reaction.
-
Ma JX, Fang M, Lau NT, J. Catal., 163(2), 271 (1996)
- Hibbert DB, Campell RH, Appl. Catal., 41, 289 (1988)
- Jin Y, Yu Q, Chang SG, Environ. Prog., 16, 1 (1998)
- Yoo KS, Chu KJ, Kim KT, J. Korean Soc. Environ. Eng., 20, 1191 (1998)
- Lee WS, Lee HK, Jo HD, Kim SG, Kim IW, HWAHAK KONGHAK, 34(6), 700 (1996)
- Liu W, Flytzani-Stephanopoulos M, "Environmental Catalysis," ed. J.N. Armor, ACS Symposium Series 552, Am. Chem. Soc., Washington, D.C., 375 (1994)
-
Kim H, Park DW, Woo HC, Chung JS, Appl. Catal. B: Environ., 19(3-4), 233 (1998)
- Yoo KS, Jeong SM, Kim SD, HWAHAK KONGHAK, 37(2), 229 (1999)
- Park BB, Rhee BS, HWAHAK KONGHAK, 37(2), 141 (1999)
-
Liu W, Sarofim AF, Flytzanistephanopoulos M, Appl. Catal. B: Environ., 4(2-3), 167 (1994)
- Bagllo JA, Ind. Eng. Chem. Prod. Res. Dev., 21, 154 (1982)
- Happel J, Hnaton MA, Bajars L, Kundrath M, Ind. Eng. Chem. Prod. Res. Dev., 14, 154 (1975)
- Brazes JGI, Caretto LS, Nobe K, Ind. Eng. Chem. Prod. Res. Dev., 14, 264 (1975)
- Hibbert DB, Campell RH, Appl. Catal., 41, 273 (1988)
- Khalafalla SE, Hass LA, J. Catal., 24, 121 (1972)
- Hass LA, Khalafalla SE, J. Catal., 29, 264 (1973)
- Hass LA, Khalafalla SE, J. Catal., 30, 451 (1973)
-
Ma JX, Fang M, Lau NT, J. Catal., 158(1), 251 (1996)
-
Ma JX, Fang M, Lau NT, Appl. Catal. A: Gen., 150(2), 253 (1997)
- Kim H, Park DW, Woo HC, Chung JS, Theor. Appl. Chem. Eng., 4, 121 (1998)
-
Yu JJ, Yu QQ, Jin Y, Chang SG, Ind. Eng. Chem. Res., 36(6), 2128 (1997)
-
Paik SC, Chung JS, Appl. Catal. B: Environ., 5(3), 233 (1995)
-
Paik SC, Kim H, Chung JS, Catal. Today, 38(2), 193 (1997)
- Bae S, Choung S, J. Korean Ind. Eng. Chem., 7(2), 269 (1996)
-
Pinna F, Catal. Today, 41(1-3), 129 (1998)