International Journal of Hydrogen Energy, Vol.29, No.10, 1009-1014, 2004
Water transport characteristics of polymer electrolyte membrane fuel cell
This paper describes the performance of a polymer electrolyte membrane fuel cell (PEMFC) system without humidification of the reactants which consumes a lot of parasitic power, increases the weight of the PEMFC system and thus adds complexity. Such PEMFC systems are preferable for portable applications. The results indicate that dry gas operation depends on various factors like reactant flow field design, area of the electrode and equilibration time for the product water. The performance of the fuel cell can be improved by giving some equilibration time for the product water, produced by the electrochemical reactions, to get transported across the membrane to the anode side, thus increasing the conductivity of the membrane. The water transported through the membrane across the cell was investigated by measuring the amount of product water at the anode side which allows humidification for the anode gas and less condensed water in the fluid flow channels of the cathode. (C) 2003 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.