화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.8, 1192-1199, December, 1999
Ni/Cd 전지에서 전해액에 의한 페이스트식 카드뮴 전극 특성 향상
An Improvement of the Characteristics of Pasted Cadmium Electrodes by Electrolytes in Ni/Cd Battery
초록
Ni/Cd 전지의 페이스트식 카드뮴전극에 있어서 방전시 생성되는 Cd(OH)2의 구조를 전해액에 의하여 γ-Cd(OH)2의 구조로 변화시켜 전극에 활물질을 고밀도로 충전시키므로써 전극의 특성을 향상시켰다. 전해액은 KOH 수용액에 NaOH를 농도별로 첨가하여 사용하였다. NaOH를 1.82 M 첨가한 전해액 내에서 충·방전한 전극의 활물질 이용률이 가장 높았으며, NaOH 첨가량의 증가에 의해 방전생성물인 Cd(OH)2는 β상에서 γ상으로 변화하는 정도가 증가하였다. 방전시 NaOH가 참가된 전해액에서 생성된 γ-Cd(OH)2 구조의 활물질 비표면적은 NaOH가 첨가되지 않은 전해액에서 생성된 β-Cd(OH)2 구조의 활물질 비표면적에 비하여 170% 이상 증가하였다. 밀폐형 전지에서는 NaOH가 첨가된 전해액의 전지가 첨가되지 않은 전지에 비하여 1.0 C와 2.0 C rate의 고율 충·방전 조건에서 방전용량이 증가하였으며, 1.0 C rate의 cycle에서도 향상된 성능이 500 cycle까지 지속되었다.
The morphology changes of cadmium hydroxide into γphase by eletrolytes were carried out to improve the high rate charge and discharge efficiency of pasted cadmium electrodes. KOH solutions with different concentrations of NaOH were used as eletrolytes. It was found that the utilization of active material of cadmium electrode was the best in an electrolyte with 1.82 M NaOH. The amount of γ-Cd(OH)2 increased in proportion to the concentration of NaOH. The surface area measurement showed that an active material which contained mainly γ-Cd(OH)2 had a higher specific surface area than an active material of β-Cd(OH)2. In a sealed cell, the discharge capacity was improved at high rate charge and discharge (1.0 C, 2.0 C) by using an electrolyte with NaOH. Furthermore, these improved performances were maintained up to 500 cycles at 1.0 C rate charge and discharge cycles.
  1. Barnard R, J. Appl. Electrochem., 11, 217 (1981) 
  2. Timmerman OJ, 28th Intersociety Energy Conversion Engineering Conference, 1, 1165 (1993)
  3. Kaiya H, Fujioka N, Kaida S, Denki Kagaku, 63, 724 (1995)
  4. Falk SU, Salkind AJ, Alkaline Storage Batteries, John Wiley and Sons, 621 (1969)
  5. Munshi MZA, Tseung ACC, Parker J, Dawson JL, J. Appl. Electrochem., 15, 737 (1985) 
  6. Munshi MZA, Tseung ACC, Parker J, J. Appl. Electrochem., 17, 427 (1987) 
  7. Kaiya H, Fujioka N, Denki Kagaku, 63, 834 (1995)
  8. Oshitani M, Takayama T, Uramoto H, Tsuji S, Yuasa-Jiho, 59, 24 (1985)
  9. Oshitani M, Yamane M, Hattori S, Kimura S, Yuasa-Jiho, 51, 44 (1981)
  10. Okinaka Y, J. Electrochem. Soc., 117, 289 (1970)
  11. Breiter MW, Weininger JL, J. Electrochem. Soc., 113, 651 (1966)
  12. Heusler KE, Gaiser L, J. Electrochem. Soc., 117, 762 (1970)
  13. Hosono T, Matsui M, Suzuki K, Denki Kagaku, 27, 241 (1959)
  14. Hosono T, Matsui M, Denki Kagaku, 29, 34 (1961)
  15. Hosono T, Matsui M, Denki Kagaku, 30, 339 (1962)
  16. Yoshizawa S, Takehara Z, Denki Kagaku, 32, 203 (1964)
  17. Oshitani M, Ohnishi M, Kawamura C, Yuasa-Jiho, 68, 17 (1990)
  18. Yoshizawa S, Takehara Z, Denki Kagaku, 34, 661 (1966)
  19. Oliva P, Leonardi J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, Fievet F, de Guibert A, J. Power Sources, 8, 229 (1982) 
  20. Lecery A, Riou YCA, Gereult Y, Mater. Res. Bull., 23, 1479 (1988) 
  21. Riou A, Cudennec Y, Gerault Y, Mater. Res. Bull., 25, 987 (1990) 
  22. Schmidt M, Lutz HD, Mater. Res. Bull., 26, 605 (1991) 
  23. Weckler B, Lutz HD, Spectrochim. Acta, A52, 1507 (1996)
  24. Okinaka Y, Whitehurst CM, J. Electrochem. Soc., 117, 583 (1970)
  25. 川內晶介, 飯島孝志, 川瀨哲成, 新しい電池技術のはなし, 工業調査會, 5 (1993)