Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.1, 57-61, February, 2000
섬유로부터 성형된 판상 HBA/HNA 공중합체 블렌드의 단계별 열처리시 일어나는 에스터 교환반응
Study on Interchain Transesterification Reaction in Fiber Molded Sheet of HBA/HNA Copolymer Blends during Stepwise Annealing
E-mail:
초록
70/30과 73/27 4-hydroxybenzoic acid (HBA)/2-hydroxy-6-napthoic acid (HNA) 공중합체 블렌드의 섬유 성형시료에서 일어나는 에스터 교환반응 (interchain transesterification reaction, ITR)을 시차주사 열분석 (differential scanning calorimetry, DSC)과 광각 X-선 회절 분석법 (wide angle X-ray diffractonmetry, WAXD)을 이용하여 연구하였다. 각각 30/70과 73/27의 몰비를 가지는 HBA/HNA 공중합체의 블렌드 후 조성은 몰비 기준으로 60/40이었다. 섬유로부터 성형된 HBA/HNA 시이트가 결정-액정 전이온도 근처에서 단계별 열처리(stepwise annealing)될 때 265℃에서 열처리된 시료의 DSC 결과는 240℃ 근처에서 새로운 피이크를 보여주는데 이는 60/40 HBA/HNA 공중합체의 결과와 일치하는 것이다. 열처리 전 시료에서 나타나는 처음 두 개의 meridional WAXD 피이크들은 단계 열처리가 적용될 때 중간위치에서 한 개의 넓은 피이크를 보여주었다. 섬유로부터 성형된 HBA/HNA 시이트의 전이온도 근처에서의 단계 열처리는 랜덤 (random) 공중합체를 형성할 수 있는 ITR을 유발시킨다. 이와 같은 ITR의 진행은 265℃에서 열처리 시간에 따른 전이온도의 변화로부터 확인할 수 있었다.
The interchain transesterification reaction (ITR) occurring in the blends of 30/70 and 73/27 4-hydroxybenzoic acid(HBA)/2-hydroxy-6-napthoic acid (HNA) copolymers have been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffractometry (WAXD). The composition of 30/70 and 73/27 HBA/HNA blend was found to be 60/40 mole %. When the fiber molded HBA/HNA sheet was annealed near the crystal-liquid crystal transition temperatures, DSC thermogram of the sample treated at 265℃ showed a new peak around 240℃ which was also found for the random 60/40 HBA/HNA copolyester. The first two meridional WAXD peaks shown in the untreated sample merged to give a single broad peak, with an intermediate d-spacing. Stepwise annealing of the HBA/HNA copolyester blends near transition temperature resulted in ITR, leading to random copolymer in small portion. Progress of this reaction was traced by monitoring the change in peak temperature of DSC thermogram as a function of annealing time at 265℃.
- Butzbach CD, Wendroff JH, Zimmermann HJ, Polymer, 27, 1337 (1986)
- Lin YG, Winter HH, Macromolecules, 24, 2877 (1991)
- Schneggenburger LA, Osenar P, Economy J, Macromolecules, 30(13), 3754 (1997)
- Potter CW, Lim JC, Serpe G, Economy J, Makromol. Chem. Macromol. Symp., 55, 271 (1994)
- Kachidza J. Serpe G, Economy J, Makromol. Chem. Macromol. Symp., 53, 65 (1992)
- Kaito A, Kyotani M, Nakayatama K, Macromolecules, 23, 10 (1993)
- Liu J, Rybnikar F, Geil PH, J. Macromol. Sci.-Phys., 35, 375 (1996)
- Yoon DY, Ando Y, Park OO, Karis TE, Dawson D, Huang T, Polym. Prepr., 37, 81 (1996)
- Muchlebach A, Economy J, Johnson RD, Karis T, Lyerla J, Macromolecules, 23, 1803 (1990)
- Mccullagh CM, Blackwell J, Jamieson AM, Macromolecules, 30(17), 4837 (1997)
- Demeuse MT, Jaffe M, Mol. Cryst. Liq. Cryst., 157, 535 (1988)
- Lenz WR, Jin J, Feichtinger KA, Polymer, 24, 327 (1983)
- Murano M, Polym. J., 30, 281 (1998)
- Mccullagh CM, Blackwell J, Jamieson AM, Macromolecules, 27(11), 2996 (1994)
- Alt DJ, Hudson SD, Garay RO, Fujishiro K, Macromolecules, 28(5), 1575 (1995)
- Blackwell A, Biswas A, Cheng HM, Cageao RA, Mol. Cryst. Liq. Cryst., 155, 299 (1988)
- Shimoda T, Kimura T, Ito E, Macromolecules, 30(17), 5045 (1997)
- Blackwell J, Gutierrez GA, Polymer, 23, 671 (1982)