화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.1, 105-112, February, 2000
- 촉매를 이용한 폐고분자 물질의 자원화 - III. 자동차 시트용 폴리우레탄 폼의 글리콜리시르를 통한 재활용
- Catalytic Recycling of Waste Polymer - Recycling on the Glycolysis of Waste Polyurethane Foam Automotive Seats
E-mail:
초록
자동차 시트용 폴리우레탄 폼 폐기물은 촉매 글리콜 분해반응을 통해 폴리올과 carbamate 화합물로 회수하여 재생 폴리우레탄 폼을 제조하는데 사용 할 수 있다. 촉매 글리콜 분해반응은 에스테르 교환반응을 통해 이루어지며, hydrolysis와 aminolysis와 비교해 회수 폴리올의 함량이 높고 아민 함량이 낮아 재생 폴리우레탄 폼의 제조의 원료물질로 사용하는데 효과적인 공정이다. 촉매 글리콜 분해반응에서 촉매의 종류에 따른 폴리올 중의 수산가와 전아민가는 potassiumm, sodium acetate와 sodium hydroxide, potassium hydroxide 염기성 촉매 등을 사용했을 때 높았고, zinc acetate 촉매의 경우는 낮았다. 촉매 글리콜 분해반응에서 회수된 폴리올 내에 함유된 디아민은 폼의 제조과정에서 발포반응 속도를 조절하는 기능을 갖고 있어 재생 폴리우레탄 폼의 물성에 영향을 주었다. 디아민이 함유된 회수 폴리올의 첨가량이 증가할수록 인장강도, 인열강도, 압축강도 등은 10wt% 까지 증가하는 경향을 보이다가 점차 감소하였다.
The waste of polyurethane foam for automotive seats can be recycled to produce new polyurethane foam as being recovered into polyols and carbamate compounds by transesterification reaction of catalytic glycolysis. The catalytic glycolysis is an efficient chemical recycling process in recovering raw materials of polyurethane foams from the waste of polyurethane foams, compared with hydrolysis and aminolysis. In this work, polyurethane was glycolyzed in the presence of potassium, sodium acetate, sodium hydroxide, potassium hydroxide and zinc acetate as a catalyst. Hydroxyl value and total amine value of polyols from catalytic glycolysis at the various catalysts was high in potassium sodium acetate, sodium hydroxide, potassium hydroxide and low in zinc acetate. The amount of diamine which were contained in recovered polyols had effects on both the reaction rate and physical properties of the foam. The physical properties tensile strength, tear strength, hardness and compressive strength of the foam were improved with the amount of recovered polyols blended with virgin polyols up 10 wt %.
  1. Burnett RH, Baum GA, Ehrig RJ, "Plastics Recyling," 177, Hanser Publishers, New York (1992)
  2. Brandrup J, Bittner M, Michaeli W, Menges G, Bauer G, "Recycling and Recovery of Plastics," 518, Hanser Publishers, New York (1996)
  3. Hansmann J, Mustafa M, "Plastics Waste Management," 223, Marcel Dekker Inc., New York (1993)
  4. Park CR, Kim SI, Kim YC, Park NC, Seo G, J. Korean Ind. Eng. Chem., 8(6), 920 (1997)
  5. Park CR, Kim SI, Kim YC, Park NC, Seo G, J. Korean Ind. Eng. Chem., 10(3), 388 (1999)
  6. (財)日本産業技術振興協會編, "資源高度リサイクル利用技術," 133, 資源高度リサイクル利用技術硏究推進協議會, 東京 (1993)
  7. Modesti M, Simioni F, Munari R, Baldoin N, J. React. Functional Polym., 26, 157 (1995) 
  8. Imai Y, Shu-chang X, Enomoto K, Polyurethanes World Congress, 10, 108 (1993)
  9. Enayati N, Riahi A, Topac H, Arastoopour H, Ivanov G, Shutov F, Polyurethanes World Congress, 10, 103 (1993)
  10. 2nd Lectures on Petrochemicals-Science and Technology of Polyurethanes, Yochon Section, The Korean Chemical Society (1996)
  11. Urbanski J, Czerwinski W, Janika K, Majewska F, Zowall H, Handbook of Analysis of Synthetic Polymers and Plastics, Ellis Horwood, Chichesten, UK (1977)
  12. Allen E, Analit. Chem., 23, 592 (1951) 
  13. Modesti M, Simioni F, Rienzi SA, J. Elastomers Plstics, 24, 288 (1992)
  14. Simioni F, Bisello S, J. Cell. Polym., 2, 285 (1983)
  15. Modesti M, Bisello S, Tavan M, J. Cell. Polym., 2, 281 (1983)
  16. Morozov YL, Khabarova EV, Alter YM, Tkachuk AP, Gorman S, Polyurethanes World Congress, 10, 108 (1993)
  17. Bauer G, Polyurethanes World Congress, 9, 24 (1991)
  18. Modesti M, Simioni F, Polym. Eng. Sci., 36(17), 2173 (1996) 
  19. Cambell GA, Meluch WC, Environ. Sci. Technol., 10, 182 (1976)