화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.34, No.17, 7323-7333, 2009
Optimal vehicle control strategy of a fuel cell/battery hybrid city bus
In this article, an optimal vehicle control strategy based on a time-triggered controller area network (TTCAN) system for a polymer electrolyte membrane (PEM) fuel cell/nickel-metal hydride (Ni-MH) battery powered city bus is presented. Aiming at improving the fuel economy of the city bus, the control strategy comprises an equivalent consumption minimization strategy (ECMS) and a braking energy regeneration strategy (BERS). On the basis of the introduction of a battery equivalent hydrogen consumption model incorporating a charge-sustaining coefficient, an analytical solution to the equivalent consumption minimization problem is given. The proposed strategy has been applied in several city buses for the Beijing Olympic Games of 2008. Results of the "China city bus typical cycle" testing show that, the ECMS and the BERS lowered hydrogen consumption by 2.5% and 15.3% respectively, compared with a rule-based strategy. The BERS contributes much more than the ECMS to the fuel economy, because the fuel cell system does not leave much room for the optimal algorithm in improving the efficiency. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.