International Journal of Hydrogen Energy, Vol.35, No.13, 6482-6489, 2010
Numerical analysis of indirect internal reforming with self-sustained electrochemical promotion catalysts
In this paper, we establish a numerical model for simulating an indirect internal reforming section in a solid oxide fuel cell to demonstrate the effect of the electrochemical promotion and coupling between selective anode catalysts and selective cathode catalysts in the catalyst pack. The model employs a simplified geometrical model of an indirect internal reforming section in the anode chamber of a solid oxide fuel cell. However, the model includes very complicated combination of conventional reforming processes, electrochemical promotion and coupling. The results predict that the electrochemical promotion and coupling in a microscopic scale can enable a significant reforming and production of hydrogen at a relatively low temperature (500 degrees C). (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.