International Journal of Hydrogen Energy, Vol.36, No.5, 3515-3520, 2011
Synthesis and hydrogen storage properties of ultrafine Mg-Zn particles
Mg-6.9 at.% Zn ultrafine particles (UFPs) were prepared by hydrogen plasma-metal reaction (HPMR) method. The electron microscopy study revealed that they were spherical in shape with particle size in the range 100-700 nm. Each fine particle was composed of single crystal structure of alpha-Mg(Zn) solid solution and amorphous structure of Mg-Zn alloy. After one absorption and desorption cycle, these UFPs transformed from the single crystal into the nanocrystalline structure and the mean particle size changed from 400 to 250 nm. It was found that the Mg-Zn UFPs could absorb 5.0 wt.% hydrogen in 20 mm at 573 K and accomplish a high hydrogen storage capacity of 6.1 wt.% at 573 K. The fine particle size, nanocrystalline structure and the low oxide content of the obtained sample promoted the hydrogen sorption process with low hydrogen absorption activation energy of 56.3 kJ/mol. The enhanced hydrogen sorption properties of high absorbing rate and high storage capacity were due to the improved kinetics rather than the change in enthalpy. Copyright (C) 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.