International Journal of Hydrogen Energy, Vol.36, No.11, 6739-6743, 2011
Enhanced electrochemical hydrogen storage capacity of multi-walled carbon nanotubes by TiO2 decoration
Electrochemical hydrogen storage of multi-walled carbon nanotubes (MWCNTs) decorated by TiO2 nanoparticles (NPs) has been studied by the galvanostatic charge and discharge method. The TiO2 NPs are deposited on the surface of MWCNTs by sol-gel method. Structural and morphological characterizations have been carried out using XRD, SEM and TEM, respectively. TiO2 NPs can significantly enhance the discharge capacity of MWCNTs. The cyclic voltammograms analysis indicates that the electrical double layer contributes little to the discharge capacity of TiO2-decorated MWCNTs. The MWCNTs modified with a certain amount of TiO2 NPs have a discharge capacity of 540 mAh/g, corresponding to an electrochemical hydrogen storage capacity of about 2.02 wt%, which is quite interesting for the battery applications. The enhancement effect of TiO2 NPs on the discharge capacity of MWCNTs could be related to the increased effective area for the adsorption of hydrogen atoms in the presence of TiO2 NPs on MWCNTs and the preferable redox ability of TiO2 NPs. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.