화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.37, No.23, 18187-18204, 2012
Contact resistance characteristics of coated metallic bipolar plates for PEM fuel cells - investigations on the effect of manufacturing
The main purpose of this study is to understand the interfacial contact resistance (ICR) characteristics of coated metallic bipolar plates (BPP) manufactured through stamping and hydroforming. To this goal, 51 mu m thick SS316L stainless steel sheet blanks were formed into BPPs using two forming techniques (stamping and hydroforming); then these formed plates were coated with three different PVD coatings (CrN, TiN, ZrN) at three different coating thicknesses (0.1, 0.5 and 1 mu m). Contact resistance of the formed and coated BPP samples were measured before and after they were exposed to the proton exchange membrane fuel cells (PEMFC) operating conditions (i.e., corrosive environment). ICR tests indicated that CrN coating increased the contact resistance of the samples, unexpectedly. TiN samples showed the best performance in terms of low ICR; however, their ICR dramatically increased after short-term exposure to corrosion. ZrN coating, as well, improved conductivity of the SS316L BPP samples and demonstrated similar ICR performance before and after exposure to corrosion. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.