Journal of Chemical Physics, Vol.108, No.13, 5599-5607, 1998
The polymerization of actin : Study by small angle neutron scattering
We report measurements of small angle neutron scattering from solutions of rabbit muscle G-actin at 3.00 mg/mL in D2O buffer solution, with [Ca2+]=0.52 mM and with [KCl]=15, 8.9, and 5.4 mM. We observe the onset of the polymerization of G-actin to F-actin as the temperature is increased. The polymerization takes place on a time scale of 30-45 min for each temperature jump of 2 degrees C-3 degrees C. As the temperature is increased further, the average size of the polymers increases, and the characteristic length scale (or correlation length), xi, of the F-actin in the dilute solution grows : xi is about 10 Angstrom below T-p, and about 70 Angstrom a few degrees above T-p. The transition is sharper for lower concentrations of KCl. For the sample with [KCl]=8.9 mM, we observe a peak in xi at about 2 degrees C above T-p, which indicates a crossover into the semidilute regime. The transition is essentially reversible, but shows evidence of incomplete depolymerization on cycling. We are unable to apply the available theoretical model for reversible polymerization to rabbit muscle actin because of a lack of information on the enthalpy and entropy of polymerization. However, our observations for rabbit muscle actin are quite analogous to observations on the equilibrium polymerization of alpha-methylstyrene [A. P. Andrews, K. P. Andrews, S. C. Greer, F. Boue, and P. Pfeuty, Macromolecules 27, 3902 (1994)].
Keywords:NONSYMMETRIC TRICRITICAL POINTS;LIQUID SULFUR SOLUTIONS;LIVING POLYMERS;EQUILIBRIUM POLYMERIZATION;PROTEIN SUBUNITS;MUSCLE ACTIN;F-ACTIN;LIGHT-SCATTERING;RATE CONSTANTS;HEAT-CAPACITY