화학공학소재연구정보센터
International Journal of Multiphase Flow, Vol.36, No.6, 439-448, 2010
Modeling of three-phase heavy oil-water-gas bubbly flow in upward vertical pipes
A bubbly gas-bubbly oil flow pattern may occur when water, heavy oil and gas flow simultaneously in vertical pipes in such a way that water is the continuous phase. In this work, a one-dimensional, thermal, transient two-fluid mathematical model, for such flow, is presented. The model consists of mass, momentum and energy conservation equations for every phase whose numerical solution is based on the finite difference technique in the implicit scheme. The model is able to predict pressure, temperature, volumetric fraction and velocity profiles. For accurate modeling of multiphase flows, the key issue is to specify the adequate closure relationships, thus drag and virtual mass forces for the gas and oil phases were taken into account and special attention was paid on the gas-oil drag force. When this force was included into the model it was found that: (1) such force had the same order of magnitude than the oil drag force and both forces were smaller than the gas drag force, (2) the pressure, gas and oil velocities and gas and oil volume fraction profiles were affected, (3) the numerical stability was increased. The model predictions are in agreement with experimental data reported in literature. (C) 2010 Elsevier Ltd. All rights reserved.