International Journal of Multiphase Flow, Vol.37, No.6, 627-639, 2011
A New modelling strategy for phase-change heat transfer in turbulent interfacial two-phase flow
The paper presents a modelling strategy for phase-change heat transfer in turbulent interfacial two-phase flow. The computational framework is based on interface tracking ITM (level set approach), combined with large-scale prediction of turbulence, a new methodology known as Large-Eddy & Interface Simulation (LEIS), where super-grid scale turbulence and interfaces are directly solved, whereas the sub-scale parts are modelled. Because steady-state flow conditions are difficult to attain, recourse is made of the Very Large-Eddy Simulation (V-LES) instead of LES, where the flow-dependent cut-off filter is larger and independent from the grid. The computational approach is completed by a DNS-based interfacial phase-change heat transfer model built within the Surface Divergence (SD) theory. The original SD model is found to return better results when modified to account for scale separation, i.e. to segregate low-Re from high-Re number flow portions in the same flow. The model was first validated for an experiment involving a smooth to wavy turbulent, stratified steam-water flow in a 2D channel (Lim et al., 1984, Condensation measurement of horizontal concurrent steam-water flow, ASME J. Heat Transfer 106, 425-432.), revealing that the original SD model performs better for high interfacial shear rates. This screening phase also demonstrated that the most critical issue is the accurate prediction of the interfacial shear using ITM. The model was then applied successfully to predict condensing steam in the event of emergency core cooling in a Pressurized Water Reactor (PWR), where water is injected into the cold leg during a postulated loss-of-coolant-accident. The simulation results agree fairly well with the COSI (short for COndensation at Safety Injections) data (Janicot and Bestion, 1993, Condensation modelling for ECC injection, Nucl. Eng. Des. 145, 37-45). (C) 2011 Elsevier Ltd. All rights reserved.