Journal of Chemical Thermodynamics, Vol.48, 235-242, 2012
Application of some geometrical and empirical models to excess molar volume for the multi-component mixtures at T=298.15 K
Densities of the quaternary mixture consisting of {1-chlorobutane (1) + 2-chlorobutane (2) + butylamine (3) + butylacetate (4)} and related ternary mixtures of {1-chlorobutane (1) + 2-chlorobutane (2) + butylamine (3)}, {1-chlorobutane (1) + 2-chlorobutane (2) + butylacetate (4)}, {2-chlorobutane (2) + butylamine (3) + butylacetate (4)}, and binary systems of {1-chlorobutane (1) + 2-chlorobutane (2)}, {2-chlorobutane (2) + butylamine (3)}, were measured over the whole range of composition at T = 298.15 K and ambient pressure. Excess molar volumes, V-m(E), for the mixtures were derived and correlated as a function of mole fraction by using the Redlich-Kister and the Cibulka equations for binary and ternary mixtures, respectively. From the experimental data, partial molar volumes, V-m,V-i and excess partial molar volumes, V-m,i(E) were also calculated for binary systems. The experimental results of the constituted binary mixtures have been used to test the applicability of the Prigogine-Flory-Paterson (PFP) theory. A number of geometrical and empirical equations were also used to verify their ability to predict ternary and quaternary properties from their lower order mixtures. The experimental data were used to evaluate the nature and type of intermolecular interactions in multi-component mixtures. (C) 2012 Elsevier Ltd. All rights reserved.