화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.370, 51-57, 2012
Novel LaBO3 hollow nanospheres of size 34 +/- 2 nm templated by polymeric micelles
Novel lanthanum borate (LaBO3) hollow nanospheres of size 34 +/- 2 nm have been reported for the first time by soft-template self-assembly process. Poly(styrene-b-acrylic acid-b-ethylene oxide) (PS-PAA-PEO) micelle with core-shell-corona architecture serves as an efficient soft template for fabrication of LaBO3 hollow particles using sodium borohydride (NaBH4) and LaCl3 center dot 7H(2)O as the precursors. In this template, the PS block (core) acts as a template of the void space of hollow particle, the anionic PAA block (shell) serves as reaction field for metal ion interactions, and the PEO block (corona) stabilizes the polymer/lanthana composite particles. The PS-PAA-PEO micelles and the resulting LaBO3 hollow nanospheres were thoroughly characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), X-ray diffraction, magic angle spinning-nuclear magnetic resonance (B-11 MAS NMR), energy dispersive X-ray analysis, thermal analyses, Fourier transform infra red spectroscopy, and nitrogen adsorption/desorption analyses. The nitrogen adsorption/desorption analyses and TEM observation of the hollow particles confirmed the presence of disordered mesopores in the LaBO3 shell domain. The solid state B-11 MAS NMR spectra of LaBO3 hollow nanospheres revealed that the shell part contains both trigonal and tetrahedral boron species. The LaBO3 hollow particles were applied to anode materials in lithium-ion rechargeable batteries (LIBs). The hollow particles exhibited high coulombic efficiency and charge-discharge cycling capacities of up to 100 cycles in the LIBs. (C) 2012 Elsevier Inc. All rights reserved.