Journal of Colloid and Interface Science, Vol.374, 141-149, 2012
Numerical study on dielectrophoretic chaining of two ellipsoidal particles
Electric field-induced assembly of biological and synthetic particles has proven useful in two- and three-dimensional fabrication of composite materials, microwires, photonic crystals, artificial tissues, and more. Biological particles are typically irregularly shaped, and using non-spherical synthetic particles has the ability to expand current applications. However, there is much to be understood about the dielectrophoretic (DEP) interaction that takes place between particles of general shape. In this work, we numerically study the DEP interaction between two prolate spheroid particles suspended in an unbounded fluid. The boundary-element method (BEM) is applied to solve the coupled electric field. Stokes flow, and particle motion, and the DEP forces are obtained by integrating the Maxwell stress tensor over the particle surfaces. Effects of the initial configuration and aspect ratio are investigated. Results show that the particles go through a self-rotation process, that is, electro-orientation, while translating slowly to form a chain pair. The final formation resembles the chaining pattern observed previously in experiments using densely distributed ellipsoidal particles. Thus, the transient behavior and particle-particle interaction exhibited in the current study could be used as the fundamental mechanism to explain the phenomenon in the experiment. (C) 2012 Elsevier Inc. All rights reserved.