Journal of Colloid and Interface Science, Vol.381, 164-170, 2012
Determination of the location of coke in catalysts by a novel NMR-based, liquid-porosimetry approach
In this work, a new technique, suitable for chemically-heterogeneous materials, has been used to characterise the structural properties of porous heterogeneous catalysts. A liquid-liquid exchange (LLE) process within nanoporous catalysts has been followed using NMR relaxometry and NMR diffusometry. In order to validate the new technique, two model materials were used. First, a chemically-pure, sol-gel silica, with a simple, mono-disperse pore-space, was studied. The second model material was a bidisperse, egg-shell Pt-alumina catalyst. The Pt-alumina catalyst was studied both fresh, and coked following chemical reaction. The degree of structural and chemical complexity added by coking was restricted by the localisation of the coke deposition to the Pt-eggshell layer. Under so-called 'metered' supply conditions, when a high affinity liquid (water) displaced a low affinity liquid (cyclohexane) from the sol-gel silica, entrapment of the low affinity liquid was observed which was similar to that observed in mercury porosimetry. In a similar experiment, comparing LLE in fresh and coked samples of the Pt-alumina catalyst pellets, it was found, for the fresh sample, that water initially displaced cyclohexane from a sub-set of the most accessible, smallest pores, as might expected under metered conditions, but this did not occur for coked catalysts. This finding suggested coking had removed some smaller pores located close to the surface of the pellet, in agreement with where the Pt-metal was preferentially located and coking was known to have occurred. (C) 2012 Elsevier Inc. All rights reserved.
Keywords:Porous materials;Structure of porous materials;Phase transitions;Percolation;Porosimetry;Catalyst pellet;Pore network;NMR;Coking