화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.409, 129-134, 2013
Enhanced phosphate selectivity from wastewater using copper-loaded chelating resin functionalized with polyethylenimine
In water and wastewater, phosphate is considered a critical contaminant due to cause algae blooms and eutrophication. To meet the stringent regulation of phosphate in water, a new commercial chelating resin functionalized with polyethylenimine was tested for phosphate removal by loading Cu2+ and Fe2+/Fe3+ to enhance selectivity for phosphate. Batch and column experiments showed that CR20-Cu exhibited high selectivity for phosphate over other strong anions such as sulfate. The average binary phosphate/nitrate and phosphate/sulfate factors for CR20-Cu were calculated to be 7.3 and 4.8, respectively, which were more than 0.97 and 0.22 for a commercial anion exchanger (AMP16). The optimal pH for the phosphate removal efficiency was determined to be 7. According to the fixed-bed column test, the breakthrough sequence for multiple ions was HPO42- > SO42- > NO3- > Cl-. Saturated CR20-Cu can be regenerated using 4% NaCl at pH 7. More than 95% of the phosphate from CR20-Cu was recovered, and the phosphate uptake capacity for CR20-Cu was not reduced after 7 regeneration cycles. (C) 2013 Elsevier Inc. All rights reserved.