화학공학소재연구정보센터
Korea Polymer Journal, Vol.5, No.1, 57-63, March, 1997
The Thermally Stable 2nd-Order NLO Polyamideimides for Photonic Devices: Direct Polycondensation and Characterization
The polyamideimides having NLO-active chromophores were synthesized by direct polycondensation of 4-[N,N''-bis(2-aminoethyl)amino]-4''-nitrostilbene (DANS-diamine) with oxy-bis[N-(4-phenylene)-trimellitic imide] (BCI) and N-(3-carboxyphenyl)-trimellitimide (BTI) without an imidization process. The direct polycondensation of NLO polyamideimides without a curing step may ameliorate the optical property of NLO polymers by reducing the optical propagation loss. The resulting polymers were highly soluble in aprotic polar solvents such as DMF, DMAc, NMP, etc.. The NLO polyamideimides had the inherent viscosity range of 0.19∼0.33 dL/g. Molecular structural characterization for the resulting polymers was achieved by 1H-NMR, FT-IR, and UV-visible spectroscopies. Their glass transition temperature was in the range of 178∼224℃ and they showed thermal stability up to 220℃. The polymer solutions could be spin coated on the indium-tinoxide (ITO) glass or quartz disc substrates to form the optical quality thin films. The electro-optic coefficients (r33) at the wavelength of 1.3㎛, measured by simple reflection method, for polymer thin films poled around the glass transition temperature were 1.9 and 6.8 pm/V.
  1. Lee HJ, Kang SJ, Kim HK, Cho HN, Park JT, Choi SK, Macromolecules, 28(13), 4638 (1995) 
  2. Kang SJ, Lee HJ, Kim HK, Park JT, Choi SK, Polym. Bull., 35(5), 599 (1995) 
  3. Burland DM, Miller RD, Walsh CA, Chem. Rev., 94(1), 31 (1994) 
  4. Chen TA, Jen AK, Cai YM, J. Am. Chem. Soc., 117(27), 7295 (1995) 
  5. Yu D, Gharavi A, Yu LP, J. Am. Chem. Soc., 117(47), 11680 (1995) 
  6. Drost KJ, Jen AKY, Rao VP, Chem. Tech., Sep., 16 (1995)
  7. Kim HK, Lee HJ, Lee MH, Han SG, Kim HY, Kang KH, Won YH, ACS Symp. Ser., 601, 111 (1995)
  8. Kim HK, Moon IK, Lee HJ, Kim DJ, Mol. Cryst. Liq. Cryst., in press
  9. Robello DR, Dao PT, Schildkraut JS, Scozzafava M, Urankar EJ, Willand CS, Chem. Mater., 7, 284 (1995) 
  10. Lindsay GA, Singer KD, Polymers for Secondorder Nonlinear Optics, ACS Symp. Ser., American Chemical Society, Washington DC, vol. 601 (1995)
  11. Verbiest T, Burland DM, Jurich MC, Lee VY, Miller RD, Volksen W, Macromolecules, 28(8), 3005 (1995) 
  12. Yang SY, Peng ZH, Yu LP, Macromolecules, 27(20), 5858 (1994) 
  13. Becker MW, Sapochak LS, Ghosen R, xu C, Dalton LR, Shi Y, Steier WH, Jen AKY, Chem. Mater., 6, 104 (1994) 
  14. Kitipichai P, Peruta L, Korenoswski GM, Wnek GE, J. Polym. Sci. A: Polym. Chem., 31, 1365 (1993) 
  15. Chen TA, Jen AK, Cai YM, Macromolecules, 29(2), 535 (1996) 
  16. Yu D, Gharavi A, Yu LP, Macromolecules, 29(19), 6139 (1996) 
  17. Chen M, Yu LP, Dalton LR, Shi YQ, Steier WH, Macromolecules, 24, 5421 (1991) 
  18. Nemoto N, Miyata F, Nagase Y, Abe J, Hasegawa M, Shirai Y, J. Mater. Chem., 6, 711 (1996) 
  19. Reuter R, Franke H, Feger C, Appl. Opt., 27, 4565 (1988)
  20. Yamazaki N, Iguchi T, Higashi F, Chem. Lett., 19, 185 (1977) 
  21. Higashi F, Hoshio A, Kiyoshige J, J. Polym. Sci., 21, 3241 (1983)
  22. Yamazaki N, Yamaguchi M, Higashi F, Kakinoki H, Synthesis, 355 (1979)
  23. Teng CC, Man HT, Appl. Phys. Lett., 58, 18 (1987) 
  24. Private Communication with Dr. H.J. Lee and Dr. Y.H. Won at the Polymeric Photonic Device Research Group in ETRI
  25. Lee HJ, Won YH, Kang SJ, Choi SK, Kim HK, J. Polym. Sci. A: Polym. Chem., 34(12), 2333 (1996)