화학공학소재연구정보센터
Journal of Chemical Physics, Vol.110, No.3, 1638-1649, 1999
Investigation of the short-time photodissociation dynamics of trans-1-bromo-2-iodoethane in the A-band absorption
We have obtained resonance Raman spectra and absolute Raman cross section measurements at five excitation wavelengths within the A-band absorption for 1-bromo-2-iodoethane in cyclohexane solution. The resonance Raman spectra have most of their intensity in the fundamentals, overtones, and combination bands of six Franck-Condon active vibrational modes; the nominal CCI bend, C-I stretch, C-Br stretch, C-C stretch, CH2 wag with the Br atom attached to the CH2 group, and CH2 wag with the I atom attached to the CH2 group. The resonance Raman intensities and A-band absorption spectrum were simulated using a simple model and time-dependent wave packet calculations. The simulation results and normal mode descriptions were used to find the short-time photodissociation dynamics in terms of internal coordinate displacements. The A-band short-time photodissociation dynamics for trans-1-bromo-2-iodoethane show that the C-I, C-Br, and C-C bonds as well as the CCI, CCBr, HCC, ICH, and BrCH angles have significant changes during the initial stages of the photodissociation reaction. This indicates the photodissociation reaction has a large degree of multidimensional character and suggests that the bromoethyl photofragment receives substantial internal excitation in so far as the short-time photodissociation dynamics determines the energy partitioning. Comparison of our results for 1-bromo-2-iodoethane with the A-band short-time dynamics of iodoethane, 1-chloro-2-iodoethane, and 1,2-diiodoethane and the trends observed for their A-band absorption spectra suggest that both the C-I and C-Br bonds experience a noticeable amount of photoexcitation.