화학공학소재연구정보센터
Korea Polymer Journal, Vol.6, No.1, 53-74, March, 1998
Nascent Melt Polymerized Poly(2,6-Oxynaphthoate): I. Morphology
Confined thin film melt polymerization (CTFMP) of 2,6-acetoxynaphthoic acid between glass surfaces, both above and below the monomer melting point, results in its polymerization-crystallization as lamellar, extended chain, single disclination domains and single crystals of poly(2,6-oxynaphthoc acid)(PONA). CTFMP between mica results in heterotropic epitaxy, the c-axes of the PONA lying parallel to the three equivalent <100>, <110> mica directions. CTFSP (solution) can result in either heterotropic or homeotropic epitaxy; in the latter case the molecules are normal to the mica surface. Low temperature bulk polymerization permits characterization of the monomer "melt" from which the polymer grows: FTIR indicates the presence of a small amount of ester bonds. The polymer formed also consists of 100Å thick lamellae: heating above T results in rapid chain extension. CTFMP under pressure results in a new crystal form with a physical repeat distance of 23.6 Å the unit cell has not yet been defined.
  1. Liu J, Rybnikar F, Geil PH, J. Macromol. Sci.-Phys., B35, 375 (1996)
  2. Liu J, Yuan BL, Geil PH, Dorset DL, Polymer, in press
  3. Calundann GW, U.S. Patent, 4,395,513, July 26 (1983)
  4. Cao MY, Wunderlich B, J. Polym. Sci. B: Polym. Phys., 23, 521 (1985)
  5. Muhlebach A, Lyerla J, Economy J, Macromolecules, 22, 3741 (1989) 
  6. Schwarz G, Kricheldorf HR, Macromolecules, 24, 2829 (1991) 
  7. Liu J, Rybnikar F, Geil PH, J. Polym. Sci. B: Polym. Phys., 30, 1469 (1992) 
  8. Kimura K, Endo S, Kato Y, Yamashita Y, Polymer, 34, 1054 (1993) 
  9. Kricheldorf HR, Adebahr T, High Perform. Polym., 6, 109 (1994) 
  10. Iannelli P, Yoon DY, Parrish W, Macromolecules, 27(12), 3295 (1994) 
  11. Rybnikar F, Liu J, Geil PH, Macromol. Chem. Phys., 195, 81 (1994) 
  12. Liu J, Rybnikar F, Geil PH, this issue
  13. Liu J, Rybnikar F, East AJ, Geil PH, J. Polym. Sci. A: Polym. Chem., 31, 1923 (1993) 
  14. Liu J, Cheng SZ, Geil PH, Polymer, 37(8), 1413 (1996) 
  15. Liu J, Geil PH, Huh SM, Jin JI, Polymer, 37(11), 2205 (1996) 
  16. Liu J, Geil PH, Huh SM, Jin JI, Acta Polym., 47, 290 (1996) 
  17. Liu J, Rybnikar F, Geil PH, J. Macromol. Sci.-Phys., B35, 375 (1996)
  18. Rybnikar F, Yuan BL, Geil PH, Polymer, 35(9), 1831 (1994) 
  19. Liu J, Geil PH, J. Macromol. Sci.-Phys., B36, 61 (1997)
  20. Liu J, Geil PH, J. Macromol. Sci.-Phys., B36, 263 (1997)
  21. Liu J, Myers J, Geil PH, Kim JC, Cakmak M, SPE ANTEC (1997)
  22. Liu J, Long TC, Geil PH, Rybnikar F, J. Polym. Sci. B: Polym. Phys., 34(17), 2843 (1996) 
  23. Liu J, Geil PH, J. Polym. Sci. B: Polym. Phys., in press, B35
  24. Liu J, Geil PH, Polymer, 34, 1366 (1993) 
  25. Rybnikar F, J. Appl. Polym. Sci., 61(10), 1631 (1996) 
  26. Rybnikar F, J. Polym. Sci. B: Polym. Phys., 34(11), 1935 (1996) 
  27. Rybnikar F, Geil PH, J. Polym. Sci. B: Polym. Phys., in press, B35
  28. Wang J, Kaito A, Yase Y, Tanigaki N, Polymer, 37(15), 3247 (1996) 
  29. Wang J, Kaito A, Ohnishi S, Yase K, Tanigaki N, Polymer, 37(21), 4695 (1996) 
  30. Wang J, Kaito A, Ohnishi S, Tanigaki N, Yase K, Macromolecules, 29(25), 8271 (1996) 
  31. Wang J, Kaito A, Ohnishi S, Yase K, Tanigaki N, J. Macromol. Sci.-Phys., in press, B36 (1997)
  32. Rybnikar F, Yuan BL, Geil PH, Polymer, 35(9), 1863 (1994) 
  33. Reneker DH, Geil PH, J. Appl. Phys., 31, 1916 (1960) 
  34. Geil PH, Growth and Perfection of Crystals, R.H. Doremus, B.W. Roberts, and D. Turnbull, Eds., Wiley, New York (1958)
  35. Geil PH, Polymer Single Crystals, Wiley-Interscience, New York (1963)
  36. Economy J, Volksen W, Winey C, Geiss R, Siemans R, Karis T, Macromolecules, 21, 2777 (1988)