Journal of Hazardous Materials, Vol.260, 860-868, 2013
Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: Implications of the interfacial charge transfer (IFCT)
This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coil inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N-2 and O-2 led to the faster E. coil inactivation by a TaON/Ag sample within similar to 40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta2O5 and Ag-species. The shifts observed for the XPS peaks have been assigned to Ago to Ag2O and Ag-0, and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag2O conduction band (cb) to the lower laying Ta2O5 (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coil inactivation. (C) 2013 Elsevier B.V. All rights reserved.