화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.262, 212-217, 2013
Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste
Shell waste, with its high content of calcium carbonate (CaCO3) plus organic matrix, has a potential to be used as a bio-filler. In this work, shell waste was modified by furfural and then incorporated to reinforce polypropylene (PP). The shell waste and modified powder were characterized by means of Xray diffraction (XRD), scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), X-ray photoelectronic spectroscopy (XPS), and Fourier transformed infrared spectroscopy (FTIR). The mechanical and thermal properties of neat PP and PP composites were investigated as well. Thermal gravimetric (TG) analyses confirmed the reinforcing role of modified powder in PP composites. The mechanical properties studied showed that adding modified powder could significantly increase the impact strength, elongation at break point and flexural modulus of composites. The maximum incorporation content could reach 15 wt.% with a good balance between toughness and stiffness of PP composites. Differential scanning calorimetry (DSC) results showed that the modified powder could act as a nucleating agent and thus increase the crystallization temperature of PP. Polarized optical microscopy (POM) observation also indicated that the introduction of modified powder could promote the heterogeneous nucleation of PP matrix. (C) 2013 Elsevier B.V. All rights reserved.