화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.271, 41-49, 2014
A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium
We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g(-1) under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0-4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed. (C) 2014 Elsevier B.V. All rights reserved.