화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.274, 124-131, 2014
Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media
A bentonite from the Northeast Brazilian region was modified with lanthanum (NT-25La) using an ion exchange process. Lanthanum incorporation in the natural clay, as well as the properties of the clay materials, were confirmed by X-ray diffraction, X-ray fluorescence, specific surface area and scanning electron microscopy (SEM/EDX). Phosphate adsorption equilibrium and kinetic tests were performed at different temperatures. The adsorption data have shown that NT-25La reaches equilibrium between modified clay and phosphate solution within 60 min of contact. The phosphate retention at room temperature reached 95%, when initial phosphate concentration in solution was 5 mg L-1. A kinetic-order variable model provided satisfactory fitting of the kinetic data. Adsorption of phosphate wag best described by a Langmuir isotherm, with maximum phosphate sorption capacity of 14.0 mg g(-1). Two distinct adsorption mechanisms were observed that may influence the adsorption processes. The investigation pointed out that the phosphate adsorption occurs via physisorption processes and that the use of NT-25La provides a maximum phosphate sorption capacity higher than many commercial adsorbents. (C) 2014 Elsevier B.V. All rights reserved.