Journal of Hazardous Materials, Vol.274, 156-163, 2014
Haloactamides versus halomethanes formation and toxicity in chloraminated drinking water
In this study we quantified the concentrations of nine haloacetamides (HAcAms) and nine halomethanes (HMs) in the final waters of five drinking water treatment plants (DWTPs) that use either chlorination or chloramination for disinfection and evaluated the toxicity of dichloroacetamide (DCAcAm) and dichloromethane (DCM) in normal rat kidney (NRK) cells using four in vitro toxicity assays. All the DWTPs final waters contained primarily di-HAcAms, followed by tri- and mono-HAcAms, and DCAcAm was the most abundant species of the 9 HAcAms, regardless of chlorination or chloramination being applied. In the final waters of DWTPs using chlorination, tri-HMs (trihalomethanes, THMs) accounted for the majority of HMs, whereas chloramination resulted in more di-HMs (especially DCM) than THMs. All four in vitro toxicity assays indicated that the NRK cell chronic cytotoxicity and acute genotoxicity of DCAcAm were substantially higher than that of DCM. In view of observed occurrence concentrations and quantified toxicity levels, the findings of this study suggest that DCAcAm represents a higher toxicity risk than DCM in chloraminated drinking waters. (C) 2014 Elsevier B.V. All rights reserved.
Keywords:Haloacetamides;Halomethanes;In vitro toxicity;Chlorination;Chloramination;Drinking water treatment