Journal of Loss Prevention in The Process Industries, Vol.18, No.4-6, 520-525, 2005
Real-time response system for the prediction of the atmospheric transport of hazardous materials
Human urge of exploiting earth resources has resulted into unprecedented industrial development in the last century resulting into production of large quantities of hazardous chemicals. Chemical, petrochemical, nuclear, biomedical and pharmaceutical industrial accidents release large quantities of hazardous chemicals into the atmosphere. The accidental discharge during production or storage or transportation have subjected the population to be exposed to exceptionally high concentration levels of hazardous chemicals, taking them by surprise, unprepared with fatal consequences. An emergency planning organization has to be trained to combat this situation in the shortest possible time to minimize the number of causalities. The present paper focuses on computation of dispersion model, using emission source, accident location and online metrological data near to the sources, to provide necessary and accurate results swiftly. The predicted ground level concentrations with the hazardous nature of the chemical, speed and direction of plume, the emergency team will be supplied with all the information in graphical easy to grasp form, superimposed over a GIS map or the latest satellite image of the area. The emergency team has to be trained for all past scenarios and their preparedness, response and actions must be practiced regularly to be able to abate chemical releases accidentally or intentionally. Accidental releases of chlorine and ammonia gases in residential and industrial areas are simulated. The predicted ground level concentrations in the effected areas are shown after different time intervals. For low vapor pressure chemical, the dispersion time is large and concentration levels are low but persist for prolonged time while for volatile chemical, the concentrations are high in short time and recovering to safe environment is quick. (c) 2005 Elsevier Ltd. All rights reserved.