화학공학소재연구정보센터
Journal of Loss Prevention in The Process Industries, Vol.26, No.1, 236-244, 2013
Numerical investigation and theoretical prediction of self-ignition characteristics of coarse coal stockpiles
Spontaneous combustion of coarse coal stockpiles in temporary coal storage yards was investigated numerically using COMSOL Multiphysics software. The main purposes of the numerical investigation were to identify the self-ignition characteristics of coarse coal stockpiles and formulate a theoretical model to predict the self-ignition time and locations of coarse coal piles. A mathematical model for self-ignition of coarse coal piles was developed and the process of spontaneous ignition of coarse coal stockpiles was simulated. The kinetic data of low-temperature oxidation reaction was obtained from the laboratory-scale experiments with bituminous coals taken from Jindi Coal Mine of Shanxi Province in China. The influence of moisture was ignored because the studied coal had low moisture content (mass concentration: 1.87%) and both coal and ambient environment were assumed to be saturated with moisture (or ambient environment was assumed to be dry). The effects of five variables (i.e. wind velocity, oxygen concentration, height, porosity, and side slope) on the spontaneous ignition in coarse coal piles were examined. Simultaneously, a theoretical prediction model was formulated in light of variable analyses and a great number of simulations. Compared to self-ignition characteristics of fine-particle coal piles, several self-ignition characteristics of coarse coal piles were identified by numerical investigation. Wind-driven forced convection plays a predominant role in self-heating of coarse coal piles. As wind velocity increases, the self-ignition location in the pile migrates from the lower part which is close to the surface of the windward side to the upper part near to the surface of the leeward side. Wind velocity increase exerts the positive or the negative effect on self-heating, which depends on a critical wind velocity value to sustain balances of both the heat and the availability of oxygen in the coarse coal pile. The behavior of self-ignition is remarkably sensitive to both oxygen concentration and height, and a coarse coal stockpile will not ignite spontaneously as long as one of two critical variable values is satisfied: oxygen concentration of 5% or height of 3 m. The theoretical prediction model suggests when and where countermeasures should be made to prevent the self-ignition in the coal stockpile with engineering accuracy. (C) 2012 Elsevier Ltd. All rights reserved.