화학공학소재연구정보센터
Journal of Loss Prevention in The Process Industries, Vol.26, No.3, 478-482, 2013
The application of pressure-impulse curves in a blast exceedance analysis
The magnitude of damage due to a vapor cloud explosion can be estimated in many ways, ranging from look-up tables to quantitative risk analysis. An explosion overpressure analysis is a routine part of compliance with the American Petroleum Institute (API) Recommended Practice (RP) 752 when evaluating occupied buildings in a facility that processes flammable or reactive materials. In many cases, a risk-based approach is useful because consequence modeling studies often indicate major problems for buildings at existing facilities. One of the most common risk-based methods, overpressure exceedance, incorporates a wide range of potential explosion scenarios coupled with the probability of each event to develop the probability of exceeding a given overpressure at specific locations. But this and other methods that only use overpressure may not represent an accurate building response. By combining the risk-based methodology of the exceedance analysis with pressure and impulse data in the form of pressure-impulse (P-I) curves, a better measure of building damage can be generated. P-I curves for blast loading determination have been in use for decades, and allow the user to determine levels of damage based on a predicted overpressure and its corresponding impulse. Curves have been published for entire buildings, individual structural members, window breakage, and even consequences to humans. This paper will explore application of P-I curves for building damage, and will highlight some of the benefits, as well as some of the potential problems, of using P-I curves. (C) 2012 Elsevier Ltd. All rights reserved.